Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

17 result(s) found.

Sort by

You searched for

  • Tags / Keywords norway rats
    X
Invasive rats on tropical islands: their population biology and impacts on native species
BRB
Available Online

Bunbury, Nancy

,

Harper, Grant. A,

2015
The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha?1 and black rats can attain densities of 119 rats ha?1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.
Special Issue Article: Tropical rat eradication. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean. Biological Conservation. Volume 185, May 2015
Island and Ocean Ecosystems, BRB
Available Online

Bastien. M

,

Danckwerts. D.K

,

M. Le Corre. M

,

Micol. T

,

Morey Rubio.C

,

Orlowski. S

,

Pinaud. D

,

Ringler. D

2015
Seabirds are notoriously sensitive to introduced mammalian predators and eradication programs have benefitted seabird populations and their habitats on numerous islands throughout the world. However, less evidence is available from the tropics as to the benefits of rat eradication. Here, we report the seabird recovery and vegetation dynamics on a small coralline island of the tropical western Indian Ocean, eight years after Norway rat (Rattus norvegicus) eradication. Two species of seabirds were breeding before rat eradication (red-footed and masked boobies, Sula sula and Sula, dactylatra) and, in both species, the number of breeding pairs had an apparent increase of 22?23% per year after rat eradication. Such a high annual growth rate cannot be achieved by auto-recruitment only and our data suggest that immigration from other source populations never occurred in at least one of these species. We suggest that it is rather due to a rapid increase in breeding success, which rapidly increased the observed number of breeders since birds remained in the available-for-counting-as-breeders group for much longer. Two other species, the white tern (Gygis alba) and the brown booby (Sula leucogaster) were recorded breeding in 2014. The former species has not bred on the island since 1856 and the latter has never bred on the island. Plant cover (monospecific formation of the ruderal herb Boerhavia diffusa) dramatically increased from less than 30% of surface coverage to more than 70%. Although the initial restoration project was to eradicate all introduced mammals of the island simultaneously, house mouse (Mus musculus) eradication failed. Mouse density was high 8 years after rat eradication (32 mice/ha in dry season and 52 mice/ha in rainy season) but not higher than at a comparable tropical island of the region (Juan de Nova) where mice coexist with introduced black rats (Rattus rattus) and feral cats (Felis catus). These results are discussed in terms of the direct positive effects of rat eradication on seabirds and plants and the indirect positive effects of post-eradication seabird increase on soil manuring and vegetation recovery. Overall, our results show that on tropical islands, seabird and habitat recovery can be very rapid after rat eradication and should be implemented as a restoration tool wherever possible.
Encyclopedia of biological invasions.
Island and Ocean Ecosystems, BRB

Rejmanek, Marcel

,

Simberloff, Dadniel

2011
This encyclopedia illuminates a topic at the forefront of global ecology - biological invasions, or organisms that come to live in the wrong place. Written by leading scientists from around the world, the book addresses all aspects of this subject at a global level - including invasions by animals, plants, fungi, and bacteria - in succinct, alphabetically arranged articles. Scientifically uncompromising, yet clearly written and free of jargon, the volume encompasses fields of study including biology, demography, geography, ecology, evolution, sociology, and natural history and features many cross-references, suggestions for further reading, illustrations, an appendix of the world's worst 100 invasive species, a glossary, and more. The book features articles on well-known invasive species such the zebra mussel, chestnut blight, cheatgrass, gypsy moth, Nile perch, giant African snail, and Norway rat and details regions with especially large numbers of introduced species including the Great Lakes, Mediterranean Sea, Hawaiian Islands, Australia and New Zealand. This work will be of great value in ecology and conservation science. Invasive species are a severe and exponentially growing problem of the environment, and one difficult even to characterize, much less contain.-Edward O. Wilson, author and scientist "Second only to habitat loss mixed with climate disruption, invasive species represent the next most serious threat to biodiversity. The Encyclopedia of Biological Invasions, written by an impressive group of experts, now makes available to conservation biologists, managers, decision makers, and concerned citizens a comprehensive single source of this key topic."-Paul R. Ehrlich, co-author of The Dominant Animal
A reassessment of factors, particularly Rattus rattus L., That influenced the decline of endemic birds in the Hawaiian Islands / I.A.E. Atkinson
BRB

Atkinson, I.A.E.

1977
Between 1892 and 1930, 58 percent (30 taxa) of Hawaiian endemic forest birds either were greatly reduced or became extinct. The order in which the islands experienced major declines ofseveral forest birds is Oahu (ca. 1873-1887), Hawaii (1892-1900), Mo10kai (1893-1907), Maui (18941901), Kauai (after 1900), and Lanai (1926-1932). Loss of habitat, reduced food supply, introduced avian diseases, as well as predation by man, feral cats, mongooses, and Norway rats (Rattus norvegicus) all appear to have reduced some species ofbirds, but none ofthese factors adequately explains the accelerated rates ofdecline offorest birds that occurred after 1892. Although it has been assumed that roofrats (Rattus rattus) reached Hawaii with the first European ships at the end of the 18th century, there is circumstantial evidence, independent of the bird decline data, that indicates that this rat did not arrive until after 1840, probably between 1870 and 1880. The hypothesis is advanced that after its establishment on Oahu in the 1870s, R. rattus spread to the remaining large islands in the group, resulting in a stepwise accelerated decline offorest birds on each island in turn. Hawaii thus parallels some other Pacific islands where major reductions of birds have followed the establishment of R. rattus. The need for precautions to prevent rats from reaching rat-free islands in the Hawaiian group is emphasized.