Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Available Online

Tags / Keywords

Available Online

757 result(s) found.

Sort by

You searched for

  • Tags / Keywords invasive species
    X
Rat and lagomorph eradication on two large islands of central Mediterranean: differences in island morphology and consequences on methods, problems and targets
Island and Ocean Ecosystems, BRB
Available Online

Baccetti, N.

,

Capizzi, D.

,

Cencetti, T.

,

De Pietro, F.

,

Giannini, F.

,

Gotti, C.

,

Puppo, F.

,

Quilghini, E.

,

Raganella Pelliccion, E.

,

Sammuri, G.

,

Sposimo, P.

,

Trocchi, V.

,

Vagniluca, S.

,

Zanichelli, F.

2019
Montecristo and Pianosa islands, although approximately equal in surface area (c. 1,000 ha), di?er greatly in substrate, human presence, vegetation and altitude (650 m vs. 30 m asl, respectively). The former island hosts one of the largest yelkouan shearwater (Pu?nus yelkouan) populations in Italy, the latter a depleted remnant of once numerous Scopoli’s shearwaters (Calonectris diomedea). Two consecutive EU-funded LIFE projects have been designed to protect these seabird populations. On Montecristo, rough and inaccessible, aerial delivery of toxic baits in January-February 2012 eradicated black rats (Rattus rattus) and feral rabbits (Oryctolagus cuniculus) (originally a non-target species), with no permanent consequences on a local, ancient population of wild goats (Capra hircus). Eradication on Pianosa, currently underway (started January 2017), is being performed by ground baiting, delivered by 4,750 dispensers placed on a 50 m × 50 m grid throughout the island. The latter operation is included in a multi-species eradication aimed at several other target species, among which was the brown hare (Lepus europaeus), apparently introduced around 1840. Genetic analyses on the ?rst trapped hares showed that this was the last uncontaminated and viable population of L. europaeus subsp. meridiei in existence. Whether of natural origin or introduced, the commencement of eradication of this population has instead created the awareness of a taxon otherwise unavailable for conservation elsewhere. While both projects address the same conservation issues (protection of shearwater colonies and restoration of natural communities), they di?er greatly regarding economic cost, public perception, e? ort needed to maintain results in the long term and e?ects on non-target species. In the present paper, speci?c attention has been paid to the comparison between bait delivering techniques, results obtained, the array of problems originating from the complex regulatory framework and reactions by the general public.
The history of the aerial application of rodenticide in New Zealand
Island and Ocean Ecosystems, BRB
Available Online

Broome, K.

,

Garden, P.

,

McClelland, P.

2019
Following the incursion of rats (Rattus rattus) on Taukihepa (Big South Cape Island; 93.9 km²) off southern New Zealand in 1963, and the subsequent extirpation of several endemic species, the New Zealand Wildlife Service realised that, contrary to general belief at the time, introduced predators do not reach a natural balance with native species and that a safe breeding habitat for an increasing number of ‘at risk’ species was urgently needed. Off shore islands offered the best option for providing predator free habitat but there was a limited number of predator-free islands available and most were very small. Eradicating rodents on larger islands to provide a wider range and greater area of habitats was required and hand treating these larger areas using trapping and hand application of toxicants, the only methods available at the time, proved problematic and often impossible. Helicopters had been used to distribute bait for the control of rabbits and brushtail possums in the past but eradication of any particular predator species was considered ‘not feasible’. The development of a GPS-based aircraft guidance system, a suitable bait product, specialised bait delivery systems and second-generation anti-coagulant toxicants changed that. Now islands as large as South Georgia (3,900 km²) have been treated using this method
Successes and failures of rat eradications on tropical islands: a comparative review of eight recent projects
Island and Ocean Ecosystems, BRB
Available Online

Brown, D.

,

Cranwell, S.

,

Cuthbert, R.J.

,

Griffiths, R.

,

Howald, G.

,

Keitt, B.

,

Pitt, W.C.

,

Tershy, B.

,

Wegmann, A.

2019
Rat eradication is a highly effective tool for conserving biodiversity, but one that requires considerable planning eff ort, a high level of precision during implementation and carries no guarantee of success. Overall, rates of success are generally high but lower for tropical islands where most biodiversity is at risk. We completed a qualitative comparative review on four successful and four unsuccessful tropical rat eradication projects to better understand the factors influencing the success of tropical rat eradications and shed light on how the risk of future failures can be minimised. Observations of juvenile rats surviving more than four weeks after bait application on two islands validate the previously considered theoretical risk that unweaned rats can remain isolated from exposure to rodent bait for a period. Juvenile rats emerging after bait was no longer readily available may have been the cause of some or all the project failures. The elevated availability of natural resources (primarily fruiting or seeding plants) generated by rainfall prior to project implementation(documented for three of the unsuccessful projects) may also have contributed to project failure by reducing the likelihood that all rats would consume sufficient rodent bait or compounding other factors such as rodent breeding. Our analysis highlights that rat eradication can be achieved on tropical islands but suggests that events that cannot be predicted with certainty in some tropical regions can act individually or in concert to reduce the likelihood of project success. We recommend research to determine the relative importance of these factors in the fate of future tropical projects and suggest that existing practices be re-evaluated for tropical island rodent eradications.
Eradication of mice from Antipodes Island, New Zealand
Island and Ocean Ecosystems, BRB
Available Online

Elliott, G.

,

Greene, T.

,

Horn, S.

2019
In winter 2016, the New Zealand Department of Conservation (DOC) eradicated mice (Mus musculus) from the Antipodes Islands located at 49°S 178°E, 760 km south-east of New Zealand’s South Island. Mice were the only mammalian pest species present. They have extensively impacted the abundance and survival of invertebrates, with likely secondary impacts on endemic terrestrial birds and nesting seabird fauna. Public-private partnerships with DOC instigated the project and provided essential financial support. Baseline scientific data for operational planning and outcome monitoring were collected by a research expedition in July 2013 and project planning began in 2014. At the time of writing, this is the largest eradication of mice undertaken where mice are the sole mammalian pest species. Logistical challenges were complicated by a broad range of regulatory obligations. The expedition-style project used a ship to deliver a team and equipment to Antipodes Island where they established camp and remained until the completion of baiting. Bait spread was completed incrementally as weather allowed, comprehensively covering the islands in two separate treatments between 18 June 2016 and 12 July 2016. The last sign of mice was detected 20 days after the fi rst application of bait and the eradication of mice was confirmed by monitoring in late summer 2018. Public engagement was achieved with regular operational updates across multiple platforms and positive media coverage. Non-toxic bait trials accurately predicted some by-kill of pipit (Anthus novaeseelandiae steindachneri) but did not anticipate poisoning of some Antipodes parakeet (Cyanoramphus unicolor) and Reischek’s parakeet (Cyanoramphus hochstetteri). Known pest-free islands were not baited, providing refuge for land birds to mitigate the risk. Fledging success of Antipodean albatross (Diomedea antipodensis antipodensis) chicks was not impacted by the operation and those species that were affected had recovered by summer 2018.
Scaling down (cliffs) to meet the challenge: the Shiants’ black rat eradication
Island and Ocean Ecosystems, BRB
Available Online

Bambini, L.

,

Bell, E.

,

Campbell, G.

,

Churchyard, T.

,

Douse, A.

,

Floyd, K.

,

Ibbotson, J.

,

Main, C.E.

,

Nicolson, T.

,

Reid, R.

,

Taylor, P.R.

,

Tayton, J.

,

Varnham, K.

,

Whittington, W.

2019
A successful ground-based eradication of black rats (Rattus rattus) was undertaken on the remote, uninhabited Shiant Isles of north-west Scotland over winter (14 October–28 March) 2015–16. The rat eradication was carried out as part of the Shiants Seabird Recovery Project, which aims to secure long-term breeding habitat for protected seabirds and to attract European storm petrels and Manx shearwaters to nest on the Shiants. Throughout the eradication operation, teams were stationed on two of the three main Shiant islands (Eilean an Tighe, Eilean Mhuire), with access to the third (Garbh Eilean) via a boulder causeway from Eilean an Tighe. Bait (Contrac® blocks containing the anticoagulant bromadiolone 0.005% w/w), was deployed in a grid of 1,183 bait stations covering all areas of the islands and sea stacks. Bait stations were set 50 m apart, with intervals reduced to 25 m in coastal areas of predicted high rat density. Difficult areas were accessed by boat and cliff s of ~120 m in height were accessed by abseiling down ropes made safe using either bolted anchors or ground stakes. The team of staff and volunteers worked through difficult conditions, deploying bait and monitoring intensively for any surviving rats using a combination of tools. The islands were declared rat free in March 2018. This ambitious and challenging project has greatly enhanced UK capacity in rodent eradications for the purposes of conservation.
The Isles of Scilly seabird restoration project: the eradication of brown rats (Rattus norvegicus) from the inhabited islands of St Agnes and Gugh, Isles of Scilly
Island and Ocean Ecosystems, BRB
Available Online

Bell, E.

,

Boyle, D.

,

Buckley, P.

,

Floyd, K.

,

Garratt, W.

,

Lock, L.

,

Mason, S.

,

McCarthy, R.

,

Pearce, J.

,

Pearson, J.

,

St Pierre, P.

,

Sugar, K.

2019
As part of the Isles of Scilly Seabird Recovery Project, and directed by Wildlife Management International Ltd, the eradication of brown rats (Rattus norvegicus) from the inhabited islands of St Agnes & Gugh, Isles of Scilly was completed between October 2013 and April 2014 with the assistance of volunteers, and staff from the Royal Society for the Protection of Birds, Isles of Scilly Wildlife Trust and Natural England. Bait stations with cereal-based wax blocks containing bromadiolone at 0.005% w/w were established on a 40–50 metre grid over the island. With the presence of 85 residents on the 142 ha islands, this is the largest community-based brown rat eradication globally to date. Given the fact that a community is based on these islands, community engagement and advocacy was a vital and fundamental part of the eradication. Consultation for eradication began three years prior to the operation to explain the requirements for the proposed project and to assess support, but this built on many years of wider community engagement with seabird conservation. All of the residents supported the eradication of rats and vision of the project. The consultation and inclusion of the community in decision-making and management of the Isles of Scilly Seabird Recovery Project was a critical part of the operation and key to the success of the eradication. The community took ownership of the project and has committed to the on-going biosecurity requirements following the eradication of rats. The removal of brown rats from St Agnes and Gugh was a major achievement and provided the opportunity to restore the islands' communities of seabirds and other native species. This project provided an example of the effectiveness of ground-based rodent eradication techniques on an inhabited island and the lessons learnt during this operation can be used to help proposed eradications on other islands with communities and with terrain suitable for ground-based techniques.
Rat eradication in the Pitcairn Islands, South Pacific: a 25-year perspective
Island and Ocean Ecosystems, BRB
Available Online

Brooke, M.de L.

2019
This essay offers a 25-year overview of eff orts to remove Pacific rats (Rattus exulans) from the four islands of the Pitcairn group. Following the 1991–1992 discovery that rats were severely reducing breeding success of gadfly petrels (Pterodroma spp.), Wildlife Management International proposed eradication. Eradication success was achieved using ground-based baiting on the small atolls of Ducie and Oeno in 1997, and there is now evidence of petrel recovery on Oeno, but two eradication attempts on inhabited Pitcairn (1997 and 1998) failed. By the early 2000s, the development of aerial baiting through the 1990s placed an eradication operation on the fourth island, Henderson, within reach. Preparatory fieldwork in 2009 allayed doubts in two key areas: the feasibility of maintaining a captive “back-stop” Henderson rail (Porzana atra) population, and bait uptake by crabs (Coenobita spp.). Royal Society for the Protection of Birds (RSPB) expertise secured the necessary funding of £1.5 million, and 75 tonnes of brodifacoum-containing bait were dropped in August 2011. Despite extensive mortality of free-living rails, the population, supplemented by released captive birds, returned to pre-operational levels in 2–3 years. Meanwhile those tending captive rails saw no rat sign before leaving Henderson in November 2011. Unfortunately, a rat was sighted in March 2012, and continuing rat presence confirmed in May 2012. Subsequently rat numbers have returned to pre-operational levels without any sign of population ‘overshoot’ as observed on Pitcairn. Genetic analysis suggests around 80 rats, roughly 1 in 1,000, survived the bait drop. With no evidence of imperfect bait coverage or deficiencies in bait quality or brodifacoum resistance, it seems some animals chose not to eat bait. Choice tests on Henderson Island rats suggest some rats prefer natural foods over bait. This adverse situation may have been exacerbated because, in August 2011, natural fruits were more abundant than anticipated due to drought earlier in the year. To overcome rat preference for natural food, any second Henderson attempt might benefit from more attractive bait. Without such developments, a second attempt risks another failure. Henderson’s biota will survive the delay.
Simultaneous rat, mouse and rabbit eradication on Bense and Little Bense Islands, Falkland Islands
Island and Ocean Ecosystems, BRB
Available Online

Carey, P.W.

2019
Bense and Little Bense Islands (144 ha total area) have, for over a century, supported populations of three introduced pest mammals: Norway rat (Rattus norvegicus), house mouse (Mus musculus), and European rabbit (Oryctolagus cuniculus). An operation to eradicate these mammals simultaneously was undertaken in winter 2016. Cereal pellets laced with brodifacoum (25 ppm) were hand-broadcast on both islands in two applications with 3,900 kg of bait applied in total. Baiting transects were spaced at 20 m intervals and bait-throwing positions located every 20 m along each transect. The coastline was also baited at 20 m intervals. Precision bait coverage was aided by programming GPS units to give off an audible alarm when staff reached each correct bait-throwing position. Application 1 resulted in an average bait density of 15.3 kg/ha. Application 2 commenced 10 days later and resulted in an average baiting density of 11.7 kg/ha. Reduced availability of fi eld staff resulted in coverage in Application 2 being less complete than in Application 1 and only the most important mammal habitats were baited a second time. These were: all tussock areas, all coastlines, and some inland heath areas. Areas with no vegetation (e.g. burned zone on Bense) and some inland heath communities were not treated, although all of these retained unconsumed bait from Application 1. Some non-target mortality was recorded, with dolphin gulls (Larus scoresbii) being the most common victims. This was also the only species observed to consume bait pellets. Consumption of poisoned mammals or gulls may have killed three turkey vultures (Cathartes aura jota), one striated caracara (Phalcoboenus australis), and one short-eared owl (Asio flammeus). The removal of invasive species is part of a broader ecological restoration plan for these islands and will hopefully lead to an increase in native biodiversity, including the re-establishment of the endemic passerines Cobb’s wren (Troglodytes cobbi) and blackish cinclodes (Cinclodes antarcticus).
Considerations and consequences when conducting aerial broadcast applications during rodent eradications
Island and Ocean Ecosystems, BRB
Available Online

Gill, C.

,

Griffi ths, R.

,

Holmes, N.

,

Howald, G.

,

Will, D.

2019
Aerial broadcast application is currently one of the most common methods for conducting rodent eradications on islands, particularly islands greater than 100 ha or with complex and difficult topography where access by ground teams is difficult. Overall, aerial broadcast applications have a high success rate, but can be burdened by logistical, regulatory, and environmental challenges. This is particularly true for islands where complex shorelines, sheer terrain, and the interface with the marine environment pose additional risks and concerns. Using data collected during ten eradication projects we investigate the influence that operational realities have on broadcast applications. We tested the association between the amount of bait used and island size, topography, and the desire to reduce bait application into the marine environment and then compared planned bait application to actual bait application quantities. Based on our results, islands of decreasing size and increasing coastal complexity tended to use more bait than anticipated and experienced greater variability in localised bait densities. During operations, we recommend analysing flight data to identify treated areas with localised bait densities that fall below the target application rate. We recommend that areas with low localised bait densities may result in biologically significant gaps that should receive an additional application of bait based on project risk variables such as target home range size, non-target bait competitors, and alternative foods. We also recommend a common language for discussing aerial broadcast applications and where future work can be done to improve operational decision making.