Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

71 result(s) found.

Sort by

You searched for

  • Tags / Keywords invasive plants
    X
Modelling invasive plant alien species richness in Tenerife (Canary Islands) using Bayesian Generalised Linear Spatial Models
Island and Ocean Ecosystems, BRB
Available Online

Arévalo, J. R.

,

Bacaro, G.

,

Da Re, D.

,

Fernàndez-Palacios, J. M.

,

Negrín-Pérez, Z.

,

Otto, R.

,

Rocchini, D.

,

Tordoni, E.

2019
Biological invasions are one of the major threats to biodiversity, especially on islands where the number of endemic species is the highest despite their small area. In the Canary Islands, the relationships among invasive alien species (hereafter IAS) and their environmental and anthropogenic determinants have been thoroughly described but robust provisional models integrating species spatial autocorrelation and patterns of IAS communities are still lacking. In this study, we developed a Generalised Linear Spatial Model for Invasive Alien Species Richness (IASR) under a Bayesian framework, using a methodological approach that encompass GIS and geostatistical analysis. In this study, we hypothesised that the inclusion of spatial autocorrelation can improve model performance thus obtaining more IASR-reliable predictions. In addition, this method provides uncertainty maps that prioritize areas where further sampling e?orts are needed. Our model showed that IASR in Tenerife is mainly driven by a combination of anthropogenic and natural processes, highlighting favourable conditions for IAS from the coastline to about 800 m a.s.l., especially on the windward humid aspect. Among anthropogenic factors, a clear positive relationship between road kernel density estimation and IASR was found. Indeed, road density has recently increased especially in low to mid altitudinal zones on the Canary Islands, strictly associated with urban expansion and it has been widely demonstrated to be one of the main IAS pathways. Hence, higher road density can be related to increased ‘propagule pressure’ which is, together with source of disturbance, one of the most important factors explaining richness in alien species invasion success. Our main conclusions highlight the importance of considering spatial autocorrelation and researchers’ prior knowledge to increase the predictive power of statistical models. From a practical perspective, these models and their related uncertainty, will serve as important management tools highlighting those portions of territories that will be more prone to biological invasions and where monitoring e? orts should be directed.
Using expert Knowledge and Field Surveys to Guide Management of an Invasive Alien Palm in a Pacific Island Lowland Rainforest
Island and Ocean Ecosystems, BRB
Available Online

Boehmer, H.J.

,

Dyer, M.J.B.

,

Keppel, G.

,

Tuiwawa, M.

,

Vido, S.

,

Watling, D.

2019
Invasive alien ornamental plants are a global problem, especially on oceanic islands, and can have severe impacts on native biodiversity. Pinanga coronata, is an ornamental palm tree that can form mono-dominant stands in its native habitat and is widely cultivated throughout the tropics. Here we investigate the introduction, spread, impact and management of this invasive palm in the Fiji Islands, using extensive discussions with local experts and ?eld surveys. Pinanga coronata was introduced in the 1970s to the Colo-i-Suva area, eastern Viti Levu island, Fiji´s principal island, and has since become invasive in mahogany plantations and lowland rainforest. It has also been introduced and is becoming invasive on the western side of that island. However, the distribution of P. coronata remains geographically limited to the immediate vicinity of introduction sites but it is rapidly spreading. In each location, the species has formed mono-dominant stands in the understorey and appears to be displacing native plant species, as suggested by a negative correlation of its abundance with that of native tree ferns. This highlights the need for rapid control of P. coronata in Fiji. Local experts state management should involve manual removal of seedlings and saplings, killing of adult palms by injection of herbicide, and education and legislation to prevent the further spread of the species. Based on these recommendations and ?eld data, management actions to control P. coronata are proposed and steps to develop these into a management plan are discussed. Given P. coronata threatens native biodiversity in Fiji and has the potential to invade other rainforest ecosystems in the tropics, proposed management approaches are urgent and relevant for other tropical countries.
Island invasives : scaling up to meet the challenge.
Island and Ocean Ecosystems, BRB
Available Online

Clout, M.N.

,

Martin, A.R.

,

Russell, J.C.

,

Veitch, C.R.

,

West, C.J.

2019
The papers in this volume were, with a few exceptions, presented at the third Island Invasives conference, held in Dundee, Scotland in July 2017. The papers demonstrate up-scaling in several aspects of eradication operations – not least in ambition, land area, operational size, global reach and of course financial cost. In the space of a few decades, the size of islands treated for invasive species has increased by five orders of magnitude – from a few hectares to over 100,000 ha or 1,000 km2. Meanwhile, the diversity of species being tackled has increased, as has the range of countries now actively carrying out island restoration work. Inspired by pioneers from New Zealand and Australia, principally, today the movement has spread to islands in all oceans and off all continents. This expansion has been informed by, and has in turn produced, growing experience in all aspects of this field, from non-target impacts to ecological responses to factors affecting eradication success. A major aim of publishing these Proceedings is to inform people who are, or will in the future be, planning new projects to free islands of invasive species. Regardless of its location or the target species involved, each successive operation builds on the experience of those who have gone before, and the papers in this volume represent an invaluable wealth of such experience.
Biological control of weeds in the Pacific Island countries and territories: current status and future prospects
BRB
Available Online

Day, Michael D.

,

Winston, Rachel L.

2016
Biological control of introduced weeds in the 22 Pacific island countries and territories (PICTs) began in 1911, with the lantana seed-feeding fly introduced into Fiji and New Caledonia from Hawaii. To date, a total of 62 agents have been deliberately introduced into the PICTs to control 21 weed species in 17 countries. A further two agents have spread naturally into the region. The general impact of the 36 biocontrol agents now established in the PICTs ranges from none to complete control of their target weed(s). Fiji has been most active in weed biocontrol, releasing 30 agents against 11 weed species. Papua New Guinea, Guam, and the Federated States of Micronesia have also been very active in weed biocontrol. For some weeds such as Lantana camara, agents have been released widely, and can now be found in 15 of the 21 PICTs in which the weed occurs. However, agents for other commonly found weeds, such as Sida acuta, have been released in only a few countries in which the weed is present. There are many safe and effective biocontrol agents already in the Pacific that could be utilised more widely, and highly effective agents that have been released elsewhere in the world that could be introduced following some additional host specificity testing. This paper discusses the current status of biological control efforts against introduced weeds in the 22 PICTs and reviews options that could be considered by countries wishing to initiate weed biological control programmes.