Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Available Online

Tags / Keywords

Available Online

757 result(s) found.

Sort by

You searched for

  • Tags / Keywords invasive species
    X
Natural resources management and the environment in small island developing states.
BRB
Available Online
2014
The First United Nations Conference on Environment and Development held in Rio de Janeiro in 1992 (also known as the Earth Summit) acknowledged that SIDS are a special case for sustainable development (given their unique and particular vulnerabilities).This gave rise to the First International Conference on SIDS in 1994 and the Barbados Program of Action (BPOA) which is the main policy framework addressing the economic, social and environmental vulnerabilities facing SIDS. The sustainable development of SIDS was also at the heart of the Second International Conference on SIDS held in Mauritius in 2005, and the “Mauritius Strategy for the further implementation of the Programme of Action for the Sustainable Development of Small Island Developing States” was adopted and subsequently endorsed by the United Nations General Assembly. The United Nations Conference on Environment and Sustainable Development held in Rio de Janeiro in June 2012 (Rio+20) agreed to convene the Third International Conference on SIDS in 2014. This was later endorsed by the UN General Assembly (UNGA). “The Sustainable Development of Small Island Developing States (SIDS) through Genuine and Durable Partnerships” will be held in Samoa in September 2014. FAO has been involved in supporting SIDS in addressing sustainable development issues and has contributed to the regional preparatory process (i.e. Caribbean, Pacific and AIMS regions) as well as the inter-regional and global consultation process held at the UN Headquarters in New York in February 2014. The outcome documents of these preparatory meetings specifically mention topics that are relevant to FAO’s core areas such as coastal zone management and ecosystem based approaches, institutional capacity to deter illegal, unreported and unregulated fisheries and increased attention to small-scale fisheries. Climate change is also highlighted as a threat to food security, natural resources (land, water, forest and biodiversity) and marine and coastal resources. This paper focuses on the environmental challenges of sustainable development issues with particular attention to natural resource management, environment and climate change in the food and agriculture sector (including crops, livestock, fisheries and forestry). FAO’s agriculture, fisheries, forestry and technical assistance programmes provide considerable resources to assist member countries promote conservation, sustainable use and management of natural resources and to reduce the risks associated with climate extremes as well as resilience building.
The Ecology of Rodents in the Tonga Islands
BRB
Available Online

Twibell, John

The influence on crop damage of Rattus norvegicus, Rattus rattus, and the native Polynesian rat, Rattus exulans, was studied during the establishment of a rat control program for the Tongan Department of Agriculture in 1969. This was the first long-term study of Tongan rodents. Previous scientific literature on Tongan mammals is very sparse. The Kingdom of Tonga, or Friendly Islands, consists of approximately 150 small islands with a combined area of about 256 square miles at lat 21 0 S. The majority of these islands are composed of raised coral limestone ; however, there is a row of six volcanic islands on Tonga's western border. Tongatapu, the location of the government center, is the largest and most important island. The Ha'apai island group lies 80 miles north of Tongatapu, and 150 miles north is the Vava'u group. Fiji is 420 nautical miles east and Samoa is 480 miles north. The climate is tropical and is influenced seasonally by trade winds. Since Captain Cook's first visit in 1773, Western civilization has brought trade, missionaries, and perhaps rats to Tonga. With this shipping came numerous introduced plants and animals. The arrival dates for the common rat, Rattus norvegicus, and the "European" roof rat, Rattus rattus, are not known, but are believed to be more recent, probably since the increase of regular shipping trade and the construction of wharves. Presently rodents account for approximately 20 percent of the agricultural losses and $50,000 worth of economic loss each year (Twibell, unpublished). This is a conservative estimate based on damage counts and observation. In some areas rats destroy or damage up to 50 percent of the coconuts, which represent the main economic crop in Tonga. THE INFLUENCE on crop damage of Rattus norvegicus, Rattus rattus, and the native Polynesian rat, Rattus exulans, was studied during the establishment of a rat control program for the Tongan Department of Agriculture in 1969. This was the first long-term study of Tongan rodents. Previous scientific literature on Tongan mammals is very sparse. The Kingdom of Tonga, or Friendly Islands, consists of approximately 150 small islands with a combined area of about 256 square miles at lat 21 0 S. The majority of these islands are composed of raised coral limestone ; however, there is a row of six volcanic islands on Tonga's western border. Tongatapu, the location of the government center, is the largest and most important island. The Ha'apai island group lies 80 miles north of Tongatapu, and 150 miles north is the Vava'u group. Fiji is 420 nautical miles east and Samoa is 480 miles north. The climate is tropical and is influenced seasonally by trade winds. Since Captain Cook's first visit in 1773, Western civilization has brought trade, missionaries, and perhaps rats to Tonga. With this shipping came numerous introduced plants and animals. The arrival dates for the common rat, Rattus norvegicus, and the "European" roof rat, Rattus rattus, are not known, but are believed to be more recent, probably since the increase of regular shipping trade and the construction of wharves. Presently rodents account for approximately 20 percent of the agricultural losses and $50,000 worth of economic loss each year (Twibell, unpublished). This is a conservative estimate based on damage counts and observation. In some areas rats destroy or damage up to 50 percent of the coconuts, which represent the main economic crop in Tonga.
Life-history comparisons between the native range and an invasive island population of a colubrid snake
Island and Ocean Ecosystems, BRB
Available Online

Alcaraz, S.E.

,

Fisher, R.N.

,

Fisher, S.R.

,

Gallo-Barneto, R.

,

López Jurado, L.F.

,

Patino-Martinez, C.

,

Rochester, C.J.

2019
Invasive snakes can lead to the rapid extinction of endemic vertebrates on insular ecosystems, usually because snakes are an efficient and novel predator. There have been no successful (i.e. complete) eradications to date of invasive snakes on islands. In this study we assess a novel invasion on Gran Canaria in the Canary Islands. The invader, the California king snake (Lampropeltis californiae), arrived from California via several generations in the pet trade. King snakes are captive bred for various phenotypes, and first were detected in the wild on Gran Canaria in the 1990s. Because very little natural history data exist from within their native range, we focused on developing datasets from native habitats to compare with similar data for the introduced snakes in the Canary Islands. We found that most aspects of the snake’s life history have not changed since invasion, except that there appears to be a lower level of juvenile recruitment along with an increase in the length and body mass of adult snakes on Gran Canaria. We identified environmental parameters for when capture/trapping could be completed to reduce eff ort and maximize success. Additionally, we show different trap success on the various life stages of the snakes. Risk assessments could be required prior to permitting pet trade or allowing captive bred snakes into regions where they are not native.
Spatial dynamics of invasion and distribution of alien frogs in a biodiversity hotspot archipelago
Island and Ocean Ecosystems, BRB
Available Online

Diesmos, A.C.

,

Diesmos, M.L.L.

,

Pili, A.N.

,

Supsup, C.E.

,

Sy, E.Y.

2019
The endemic-rich amphibian fauna of the Philippine Archipelago (ca. 350,000 km2) includes six alien frogs: the American bullfrog (Lithobates catesbeianus), Asiatic painted toad (Kaloula pulchra), cane toad (Rhinella marina), Chinese bullfrog (Hoplobatrachus rugulosus), green paddy frog (Hylarana erythraea), and greenhouse frog (Eleutherodactylus planirostris). The chronological history of their invasion across the Philippines was reconstructed based on historical and geographic data. Subsequently, we estimated their current and potential distribution through species distribution modelling and Gaussian kernel density smoothing species distribution data. Seven known and potential pathways of introduction into and spread throughout the Philippines were identifi ed, namely, intentional introduction as a (1) biocontrol agent and (2) food source; contamination of (3) agriculture trade, (4) aquaculture trade, and (5) ornamental plant trade; (6) stowaway of cargo; and (7) through the exotic pet trade. Spatio-temporal patterns of distribution showed a stratifi ed diff usion process of spread wherein human-mediated jum dispersal is the primary mode followed by diff usion dispersal. The status of the American bullfrog in the Philippines is unresolved, whether it has successfully established. Meanwhile, the other five alien frogs have established populations in the wild, typically the dominant species in both artificial and disturbed habitats, and are continuously spreading throughout the Philippines. Estimates of current and potential distribution indicate that none of the alien frogs has realised its full potential distribution and that the cane toad is the most widespread, occurring in almost all major islands of the Philippines (ca. 85%), while the greenhouse frog is the least distributed, being found so far in eight provinces and on seven islands. In light of these findings, we provide policy and management recommendations for responding to current and future alien frog invasions.
In situ evaluation of an automated aerial bait delivery system for landscape-scale control of invasive brown treesnakes on Guam
Island and Ocean Ecosystems, BRB
Available Online

Clark, C.S.

,

Clark, L.

,

Eisemann, J.D.

,

Gosnell, R.J.

,

Messaros, M.C.

,

Pitt, W.C.

,

Shiels, A.B.

,

Siers, S.R.

2019
After decades of biodiversity loss and economic burden caused by the brown treesnake invasion on the Pacific island of Guam, relief hovers on the horizon. Previous work by USDA Wildlife Services (WS) and its National Wildlife Research Center (NWRC) demonstrated that brown treesnake numbers in forested habitats can be dramatically suppressed by aerial delivery of dead newborn mouse (DNM) baits treated with 80 mg of acetaminophen. However, manual bait preparation and application is impractical for landscape-scale treatment. WS, NWRC, and the US Department of the Interior have collaborated with Applied Design Corporation to engineer an automated bait manufacturing and delivery system. The core technology is an aerially delivered biodegradable “bait cartridge” designed to tangle in the tree canopy, making the acetaminophen bait available to treesnakes and out of reach of terrestrial non-target organisms. When mounted on a rotary- or fixed-wing airframe, the automated dispensing module (ADM) unit can broadcast 3,600 bait cartridges at a rate of four per second and can treat 30 hectares of forest at a density of 120 acetaminophen baits per hectare within 15 minutes of fi ring time. We conducted the first in situ evaluation of the ADM in July 2016. Initial acetaminophen bait deployment rates (proper opening of the bait cartridge for canopy entanglement) were low, and mechanism jams were frequent due to internal friction and wind forces; on-site remedial engineering improved these performance measures. Bait cartridge placement and spacing were accurate (average 8.9 m along 9 m swaths) under various flight heights and speeds. Canopy entanglement of properly-deployed acetaminophen baits was high (66.6%). Although only a small proportion (5.9%) of radio transmitter-equipped acetaminophen baits were confirmed to have been taken by brown treesnakes, the baiting density was high enough to make it likely that a significant proportion of brown treesnakes in the area had taken acetaminophen baits. With subsequent improvements in system reliability, the automated bait cartridge manufacturing and delivery system is poised to transition from research and development to operational field implementation. Applications include reduction of brown treesnake numbers around transportation infrastructure and within core habitats for the reintroduction of native birds extirpated by this troublesome invasive predator.
Predation pressures on sooty terns by cats, rats and common mynas on Ascension Island in the South Atlantic
Island and Ocean Ecosystems, BRB
Available Online

Dickey, R.C.

,

Hughes, B.J.

,

Reynolds, S.J.

2019
Despite the presence of invasive black rats (Rattus rattus), common mynas (Acridotheres tristis), and feral domestic cats (Felis catus), sooty terns (Onychoprion fuscatus) breed in large numbers on Ascension Island in the tropical South Atlantic Ocean. These introduced predators impact the terns by destroying eggs or interrupting incubation (mynas), eating eggs (mynas and rats), eating chicks (rats and cats), or eating adults (cats). Between 1990 and 2015, 26 censuses of sooty terns and five of mynas were completed and myna predation was monitored on 10 occasions. Rat relative abundance indices were determined through trapping around the tern colonies and rat predation was monitored by counting chick carcasses. Cat predation was quantified by recording freshly killed terns. Prior to their eradication in 2003, cats had the greatest impact on sooty terns and were depredating 5,800 adults and 3,600 near-fledging chicks (equivalent to the loss of 71,000 eggs) each breeding season. We estimated that 26,000 sooty tern eggs (13% of all those laid) were depredated by approximately 1,000 mynas. Rats were not known to depredate sooty terns prior to cat eradication but in 2005, 131 of 596 ringed (monitored) chicks (22%) were depredated by rats. In 2009 chick carcass density was 0.16 per m2. Predation by rats hugely increased in the absence of cats and was the equivalent of 69,000 eggs. Care is needed when applying our findings to seabirds globally. The scarcity of alternative food sources and seasonally high density of easily available prey in the sooty tern colony may have magnified predation by cats, rats and mynas.