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 INTRODUCTION 

Islands display unique ecological and evolutionary 
processes, hosting more than 20% of the terrestrial plant 
and vertebrate species in the world, within less than 5% 
of the global terrestrial area (Courchamp, et al., 2014). 
Endemics on islands are present with a magnitude higher 
than on continents (Kier, et al., 2009). In fact, more than 
one third of biodiversity hotspots in the world are entirely, 
or largely, within islands (Bellard, et al., 2014). 

Besides their high diversity, islands host extremely 
fragile environments: 50 out of 80 of the documented 
plant extinctions in the last 400 years occurred on islands 
and more than 2000 endemic island taxa are currently 
thought to be on the verge of extinction (Ricketts, et al., 
2005; Whittaker & Fernández-Palacios, 2007; Fernández-
Palacios, et al., 2015). Nowhere in Europe is this pattern 
more conspicuous than in Macaronesia, the biogeographic 
region that encompasses the oceanic islands of the Azores, 
Madeira, the Canaries and the Cape Verde archipelago 
(Whittaker & Fernández-Palacios, 2007; Fernández-
Palacios, et al., 2015). Macaronesia is widely recognised 
as an outstanding biodiversity hotspot worldwide due to its 
high rates of endemism in angiosperms and in bryophytes 
(40% and 6.5%, respectively, Whittaker & Fernández-
Palacios, 2007).

Invasive Alien Species (IAS) pose a serious threat 
to the conservation of biodiversity and ecosystem 
integrity worldwide (DAISIE, 2009; Scalera, et al., 
2012). Island systems, in fact, are extremely susceptible 
to biological invasions due to low habitat diversity, 
their simplifi ed trophic webs and higher rate of endemic 

species (Courchamp, et al., 2003; Millennium Ecosystem 
Assessment, 2005; Vilà & Lopez-Darias, 2006; Barni, et 
al., 2012; Bacaro, et al., 2015). 

Oceanic islands perform as an open-air laboratory 
in the fi eld of invasion biology, because of their long 
history of large-scale anthropogenic disturbances and the 
recent introduction of non-native species (Whittaker & 
Fernández-Palacios, 2007; Denslow, et al., 2009), allowing 
us to generalise about the outcome of biotic invasions and 
to test the consistency of invasive organisms’ behaviours 
(Kueff er, et al., 2010). 

Several factors may determine the composition 
and the abundance of alien fl oras, including climate, 
geology, land use, landscape context, human impact, 
competition with natives and natural or anthropogenic 
disturbance and residence time (Crawley, 1987; Pyšek, et 
al., 2002; Arévalo, et al., 2005). Anthropogenic factors, 
such as inhabitants and trade networks, were imputed 
as main drivers of plant IAS introduction and spread: 
most populated islands should have more opportunities 
to import (and export) novel species due to the high rate 
of trade and transport with mainland areas (Pyšek, et al., 
2010). Roads are anthropogenic features that can have 
greater infl uence on the distribution of IAS, particularly 
increasing the IAS propagule pressure (Lockwood, et al., 
2005) or promoting the spread of generalist species with 
short life cycles and high reproductive rates (Parendes & 
Jones, 2000; Pauchard & Alaback, 2004; Arèvalo, et al., 
2005; Dietz & Edwards, 2006; Arteaga, et al., 2009). In 
the Canary archipelago, as well as worldwide (Pauchard, et 
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al., 2009), elevation and topography are factors driving the 
structure and distribution patterns of alien species spread 
(Arévalo, et al., 2005; Rejmánek, et al., 2005; Arteaga, et 
al., 2009)

Ecologists agree on the need for preventive tools such 
as early alert systems, given that control or eradication of 
already-established populations is more diffi  cult and costly 
(Hobbs & Humphries, 1995; Bax, et al., 2001).  Predictive 
invasion models, in fact, allow for evaluating the present 
and future extent of plant invasions. Furthermore, their 
outcomes are useful tools supporting the development of 
eradication/control programmes (Wace, 1977; Alpert, et 
al., 2000; Rejmánek & Pitcairn, 2002). 

Spatial autocorrelation (SAC) is rarely included in 
ecological models thus potentially leading to biased 
parameter estimates. Furthermore, classic geostatistical 
models assume that data are Gaussian distributed, which 
may be an unrealistic assumption for count data, such 
as species richness. Generalised linear spatial models 
(GLSMs) provide a more robust model defi nition able to 
cope with response variables belonging to the exponential 
family distribution (Diggle, et al., 1998, 2003; Zhang, 2002; 
Christensen & Waagepetersen, 2002; Diggle & Ribeiro, 
2007). By defi nition, the GLSM is a generalised linear 
mixed model in which the random eff ects are derived from 
a spatial process. The Bayesian approach allows parameter 
estimation by combining information coming from the 
observed data (via the likelihood function) as well as 
information coming from other prior sources (i.e. previous 
studies, subjective judgments) which is formalised through 
prior distributions. Therefore, Bayesian GLSMs (BGLSM) 
off er a fl exible and robust approach for incorporating 
spatial correlation and prior knowledge into the modelling 
approach. In addition, the possibility of obtaining 
uncertainty maps may provide useful information where 
data are missing and further sampling eff orts should be 
addressed. In this study, we hypothesised that the inclusion 
of SAC can improve model performance and therefore 
more reliable predictions, assuming that a variable selection 
process has been adopted. Specifi cally, we investigated 
alien species richness distribution on Tenerife (Canary 
Islands) using a multidisciplinary approach encompassing 
Geographic Information Systems (GIS), geostatistical 
calculation and statistical modelling. The main goals of 
this study are: i) to compute an ecologically and spatially 
reliable model of ASR spatial pattern in the island ii) to 
test if the inclusion of SAC into the modelling framework 
improves model performance.

MATERIALS AND METHODS

Study area
The study was carried out on Tenerife, the largest 

(2,033 km2) island of the volcanic Canary archipelago 
situated in the subtropics ca. 70 km off  the northwest coast 
of Africa (27–29° N, 13–18° W; Fig. 1). It is characterised 
by steep altitudinal gradient and it has a triangle-based 
pyramid shape with a truncated apex at 2,000 m a.s.l. at 
Las Cañadas, from which the volcano Teide rises (3,718 
m a.s.l.) 

The climate on Tenerife is semiarid to humid 
Mediterranean type (Arteaga, et al., 2009), with mean 
annual temperature reaching 19° C on the windward aspect 
and 21 °C on the leeward one. Mesoclimate is aff ected by 
trade winds that create a contrast between the northern 
and windward aspect (more humid and cloudy) and the 
southern and leeward aspect (more arid and cloudless).

Strong variation in elevation and aspect, which defi ne 
local mesoclimatic zones and land use, are primary factors 
in structuring both native and alien plant communities 
on the Canary Islands (Whittaker & Fernández-Palacios, 
2007). On Tenerife, vegetation can be simplifi ed into fi ve 
ecosystems based mainly on elevation and orientation 
gradients: succulent coastal scrub (0–700 m a.s.l.), 
thermophilous forest (200–600 m), laurel forest or 
laurisilva (500–1,000 m), Canarian pine forest (800–2,000 
m), and summit or high-mountain scrub (> 2,000 m) 
(Fernández-Palacios, 1992; del Arco Aguilar, et al. 2006).  

Statistical methods
Response variable

 The distribution of Invasive Alien Species on the 
Canary Islands is available at ATLANTIS (Gobierno de 
Canarias, 2016). This database contains the occurrences of 
alien species within a grid of 500 m × 500 m square cells 
covering the entire archipelago. Species records span from 
1970 to 2013. Invasive Alien Species Richness (IASR) on 
Tenerife was obtained by aggregating species occurrences 
in those ATLANTIS grid cells covering Tenerife Island land 
(5,514 cells out of 8,519 selected). Seventy-two species are 
present in the dataset (out of 701 alien species reported for 
the entire archipelago; Arechavaleta, et al., 2010). 

 Predictor variables
Three sets of abiotic variables, namely landscape, 

anthropogenic and climatic predictors, were derived 
in order to take into account all the the potential factors 

Fig. 1 Canary Islands and position of Tenerife Island within 
the Canary archipelago.

Da Re, et al.: Modelling invasive plant species richness



412

infl uencing alien species richness. Specifi cations of the 
variables chosen are addressed below.

Landscape predictors
The Digital Elevation Model (DEM) was downloaded 

from Cartográfi ca de Canarias S.A. (GRAFCAN, <https://
www.grafcan.es/>). Aspect and slope were derived from 
the DEM for each 10 ×10 m pixel using QGIS 2.16.0 with 
GRASS 7.0.4 (Quantum GIS Development Team, 2016). 
The standard deviation of slope was calculated as an index 
of roughness (Grohmann, et al., 2010). 

All the predictors were resampled to 500 m of 
spatial resolution using the nearest neighbour algorithm, 
accordingly to the spatial resolution of the species 
abundance grid.  The relative abundance of vegetation 
classes (del Arco Aguilar, et al., 2010) within each cell 
was used to classify each grid cell, while the percentage 
of protected area per cell was used as a proxy of landscape 
nature conservation.

Anthropogenic predictors
As a proxy of anthropogenic impacts (e.g. 

fragmentation, Bacaro, et al., 2011) the Shannon index 
based on the relative abundance of land use classes within 
each cell was computed using the R package “vegan” 
(Oksanen, et al., 2017). We calculated a density proxy for 
roads using a Kernel density estimation (Rosenblatt, 1956; 
Parzen, 1962) using four regularly distributed classes of 
sample points on the road network distant from each other 
5, 10, 20 and 50 km. As above, data were downloaded from 
Cartográfi ca de Canarias S.A.

Climate predictors
Climatic data were obtained from Agencia Estatal de 

Metereologia (AEMET) spanning from 2005 to 2014. 
Since recorded data showed many gaps throughout the 
entire time series of every single weather station, we used 
only those weather stations having records covering at 
least 80% of the full-time series for Precipitation (P) and 
60% for Temperatures (T). 

For each dataset mean annual (ma), mean seasonal 
(Winter: December, January, February (DJF); Spring: 
March, April, May (MAM); Summer: June, July, August 
(JJA)) were calculated. In order to obtain continuous 
representation of the phenomena, the co-kriging spatial 
interpolation technique (Myers, 1984) was applied using 
elevation, slope and aspect as covariates using “geoR” R 
package (Ribeiro & Diggle, 2001).

 Data analysis and modelling
Spatial autocorrelation in explanatory variables was 

checked by computing Moran’s I, using R package “spdep” 
(Bivand & Piras, 2015). In order to avoid multicollinearity, a 
forward variable selection with a double-stopping criterion 
approach (Blanchet, et al., 2008) was adopted in order 
to select the reduced set of predictors using “adespatial” 
(Dray, et al., 2017). 

This procedure consists of computing the global model 
explained by all explanatory variables via a constrained 
ordination such as Redundancy Analysis and, if the 
resulting model is signifi cant, calculating the adjusted 
coeffi  cient of multiple determination (R2

adj). Then variables 
were added to a null model (including only the intercept) 
using a forward procedure: the procedure stops when no 
more signifi cant variables were founded (for a given alpha 
level) or when the R2

adj of the model is greater than the 
global model R2

adj. This double-stopping criterion should 
prevent the selection method from being too liberal and 
consequently infl ating type I error rates. Once the reduced 
set of predictors was obtained, this was further evaluated 
via AIC comparisons using an iterative automatic routine 
(package “glmulti”, Calcagno & de Mazancourt, 2010). 
The set of predictors thus obtained was then used for 
computing the BGLSM. The resulting model was used as a 
starting point for the BGLSM. 

Unfortunately, probably as an eff ect of the high number 
of predictors retained in model selection, we came across 
issues in algorithm convergence. For this reason, we 
decided to further reduce the number of predictors chosen, 
among the reduced list previously obtained, to three which 
are known to be important drivers of the alien species 
community along the elevation gradient (Arévalo, et al., 
2005, 2010; Barni, et al., 2012, Bacaro, et al., 2015). Thus, 
only the roads 10 km kernel density, PMAM and elevation 
were included in the fi nal model (Table 1).

To take into account the spatial correlation of count 
data, a BGLSM using the Langevin-Hastings Markov 
Chain Monte Carlo (MCMC) algorithm was computed 
using the “geoRglm” R package (Christensen & Ribeiro, 
2002). To complete the Bayesian model formulation of the 
geostatistical models, a strong-informative uniform prior 
distribution (Rocchini, et al., 2017a) based on the result 
of the geostatistical model was specifi ed. Simulations 
were run with the following specifi cations: four chains, 
20,000 iterations, burn-in period of 6,000 iterations and 
a thinning rate of 100. To ensure a good mixing of the 
chains, convergences were assessed both visually and 
with Geweke's diagnostic (Geweke, 1992), along with the 
autocorrelation within the chains through “coda” package 
(Plummer, et al., 2006).  The Bayesian framework also 
allows uncertainty of the model to be taken into account, 
that is the uncertainty of the prediction in the sampling 
units (Gelman & Hill, 2006). This statistic is crucial for 
correctly interpreting results and avoiding inappropriate 
decision-making. 

Finally, the linear relationship between Predicted 
vs Observed IASR values was evaluated and the R2 was 
calculated as a measure of goodness of fi t.

All analyses were performed using the R 3.4 
environment (R Core Team, 2017).

RESULTS

A total of 72 IAS were present in the dataset, with a 
mean of 4.18 species per cell (range: 1–27). The most 
common species on the island are Opuntia maxima (3,161 

 Mean 1st quantile 3rd quantile Min Max Units
Roads 10 km kernel density 0.06523 0.02160 0.08953 0.00010 0.41928 -
PMAM2005-2014 25.808 14.878 36.546 1.647 63.103 mm
Elevation 578.9934 240.0000 794.0460 0.5685 2421.3621 m

Table 1 Summary statistics of predictors used in the MAM. The variables units are shown in the last column.

Island invasives: scaling up to meet the challenge. Ch 2E Other taxa: Plants
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occurrences), Ageratina adenophora (2,239 occurrences) 
and Ricinus communis (1,615 occurrences). On average, 
the northern (and windward) part of the island has higher 
values than the southern (Fig. 2), where the biggest cities 
are (Santa Cruz de Tenerife and San Cristóbal de La Laguna 

on the NNE coast, Puerto de La Cruz on the NW coast). 
Furthermore, a decreasing altitudinal trend in IASR was 
also observed, with higher values of IASR near the coast 
and lower values above 1,500 m a.s.l. SAC in IASR values 
were confi rmed by the Moran’s Index value (I = 0.873, p 
< 0.001).

The inclusion of SAC in the minimum adequate model 
resulted in a consistent improvement in general model 
performance (ΔAIC 7,366). In the BGLMS, Markov 
chains show good mixing and convergence as highlighted 
by Geweke’s diagnostics. Positive linear relationships of 
IASR were observed with road kernel density estimation 
(10 km) and PMAM2005-2014, while elevation showed a negative 
trend (Table 2). Suitable areas for IAS appear to be located 
in urban areas, especially on the humid leeward aspect of 
the island (Fig. 3). Model output summarised in Table 3 
and Fig. 4 shows the uncertainty in the predicted IASR 

 Variables Coeffi  cients
Intercept 3.4966
Roads 10 km kernel density 18.7518
PMAM2005-2014 0.0126
Elevation -0.0017
τ2 5.7100
σ2 10.7700
Φ 2.8950

Table 2 Model output derived from the 
maximum likelihood analysis: τ2 is the 
nugget, σ2 is the sill, Φ is the range and gives 
information about the spatial autocorrelation 
of the sampling units.

Fig. 2 Spatial pattern of alien species richness in Tenerife 
island.

Fig. 3 Spatial pattern of predicted invasive alien species 
richness by BGLSM.

Fig. 4 Spatial pattern of uncertainty of the prediction of 
invasive alien species richness by BGLSM.

Fig. 5 Predicted vs. observed alien species richness. The 
solid line represents best prediction line, dashed line the 
fi tted linear model.

 Mean 1st 
quantile

3rd 
quantile Min Max

Predicted 3.47 1.29 4.44 0.33 27.39
Uncertainty 0.75 0.40 0.90 0.14 4.48

Table 3 Descriptive statistics of model outputs.

Da Re, et al.: Modelling invasive plant species richness
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values. Figure 5 shows the predicted versus observed 
values scatterplot suggesting a good performance of model 
fi t.

DISCUSSION

The approach used in the selection of covariates and 
the incorporation of the spatial autocorrelation leads us to 
build a reliable ecological model to understand the IASR 
behaviour on Tenerife Island (Fig. 5). The outcomes of the 
model largely agree with most of the results previously 
published in the literature, taking into consideration 
both natural and anthropogenic processes. However, the 
ΔAIC suggests that incorporating SAC into GLM allows 
a consistent improvement in general model performance. 
Moreover, it allows us to obtain maps of the predictions 
that can be easily consulted by local governments. The map 
of uncertainty of the prediction provided in the Bayesian 
framework represents a powerful tool to highlight those 
areas where sampling eff orts should be directed, providing 
valuable guidance in the decision-making process. On 
average, uncertainty in the model was quite low and 
evenly dispersed across the island.  The areas where the 
uncertainty was higher are where human-related land uses 
occur, mainly in the arid coastal belt at low elevations 
(Fernández-Palacios & Nicolás, 1995; Rocchini, et al., 
2017b).

The Canary Islands, particularly Tenerife Island, are 
chiefl y characterised by a steep altitudinal gradient causing 
potential variations in several abiotic conditions such as 
water availability, temperature, precipitation, and solar 
radiation even over relatively short distances (Alexander, 
et al. 2009). IASR is inversely proportional with elevation 
as already observed in Arévalo, et al. (2005), Arteaga, et 
al. (2009) and Bacaro, et al. (2015), among others. The 
positive relationship between elevation and limiting factors 
such as drought, low temperatures and solar radiation were 
thoroughly investigated. Accordingly, it has been observed 
that at higher elevations, thermic and hydric stresses reduce 
the number of successful colonisations of alien species in 
diff erent regions of the world (Fernandez-Palacios, 1992; 
Alpert, et al., 2000; Godfree, et al., 2004; Pauchard & 
Alaback, 2004; Becker, et al., 2005).

In general, mild environmental conditions associated 
with reduced drought stress enhance alien establishment 
and spread (Whittaker & Heegaard, 2003). These conditions 
were found at ca. 800–1,000 m a.s.l. (Arévalo, et al., 2005; 
Arteaga, et al., 2009). It has been observed that invasion 
success is mainly linked to the biogeographical affi  nities 
and environmental tolerances of the species (Wilson, et al., 
1992; Arévalo, et al., 2005; Daehler, 2005). Accordingly, 
we found a positive relationship between PMAM and IASR, 
and the BGLSM highlights as suitable the humid areas 
below 1000 m a.s.l, especially on the windward aspect, 
whereas the model did not predict suitable areas above 
1500 m, except where roads are present. These fi ndings 
refl ect well the same pattern already observed in other 
studies performed both in Tenerife and in other oceanic 
islands (e.g. Arévalo, et al., 2005, Pauchard, et al., 2009; 
Bacaro, et al., 2015). In addition, Daehler (2005) observed 
similar patterns on the islands of Hawaii, where the 
relative importance of temperate species on the community 
composition increased strongly above 1,400 m a.s.l to 
detriment of the tropical ones.

Other authors (e.g. Nogués-Bravo, et al., 2008; Marini, 
et al., 2013) pointed out that relationships between 
IASR and anthropogenic factors are concentrated at low 
elevations, consequently increasing the opportunities 

for the introduction and establishment of propagules. 
Accordingly, our results showed a peak of alien species 
richness at a relatively low elevation. Species might have 
been introduced in the lowlands from diff erent sources 
and in several historical periods. The kernel road density 
estimation shows a clear positive relationship with IASR. 
Bacaro, et al. (2015) reported that alien species were absent 
from plots located at higher elevation in plots sampled near 
the main Tenerife road network, consistent with previous 
observations (Pauchard & Alaback, 2004). Road density 
has increased especially in low to mid elevation belts of the 
Canary Islands, strictly associated with urban expansion 
and, consequently, to the spread of exotic plants. Roads 
may facilitate the dispersal of propagules of alien species 
via three main mechanisms: 1) as a source of disturbance 
that creates new environmental conditions that are suitable 
to ruderal and pioneer species; 2) they may facilitate the 
dispersal of propagules via air movement associated with 
the transit of vehicles; and 3) they may boost the rate of 
invasion by reducing competitiveness of native species 
that can cause the potential disappearance of even entire 
stands (Trombulak & Frissel, 2000; Bacaro, et al., 2015). 

In this study, we assessed the incorporation of SAC 
into an ecological model built using ecologically reliable 
predictors. The incorporation of SAC improved general 
model performance and allows for for uncertainty to be 
accounted for in the model framework, providing a way 
to prioritize areas where more survey is needed along with 
further monitoring actions in order to reduce uncertainty.

Mild environmental conditions may be responsible 
for quick establishment and dispersal of aliens on islands. 
Accordingly, compared with current literature, our results 
showed higher alien species richness in mild environmental 
conditions and at a relatively low elevation. This can be 
also due to the fact that human land use is concentrated at 
low elevations, consequently increasing the opportunities 
for the introduction and establishment of propagules. To 
cope with plant alien species invasion, local governments 
have tried diff erent approaches (Foxcroft, et al., 2007) 
but the most eff ective method still remains mechanical or 
hand removal (Gobierno de Canarias, 2014). In a global 
warming scenario, a modelling approach that takes into 
account spatial autocorrelation of data may play an even 
more crucial role in alien species monitoring, highlighting 
those portions of territories that are more prone to biological 
invasions, especially in fragile ecosystems such as in the 
Canary Islands.
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