
643

INTRODUCTION

Islands support many organisms found nowhere else 
in the world, and contribute disproportionately to global 
biodiversity (Kier, et al., 2009). They also provide critical 
habitat for 45% of the IUCN-listed species (Keitt, et al., 
2011). To protect this extraordinary biological diversity, 
invasive species are being eradicated from islands at ever 
more ambitious scales (Clout & Veitch, 2002; Burbidge, 
2011), and eradication is increasingly promoted as an 
important direction for island conservation. This is 
promoting recovery of many rare and endangered species, 
and of biodiversity as a whole (e.g. Klinger, et al., 2002; 
Rauzon, et al., 2002). This retained biodiversity can 
increase the stability of a system (Hautier, et al., 2015), 
its resistance and resilience to global change (Mori, et 
al., 2013; Isbell, et al., 2015) and its resistance to further 
invasion (Tilman, 1999).

Island eradication and control eff orts overwhelmingly 
target invasive vertebrates, as an analysis of previous 
Island Invasives conference proceedings reveals (Veitch 
& Clout, 2002; Veitch, et al. 2011; 87% and 97% of the 
papers, respectively). Yet plant invaders are also key 
factors in native biodiversity decline (Wilcove, et al., 1998; 
Gaertner, et al., 2009), with their impacts to disturbance 
regimes, nutrient cycling, and fl uxes of materials and 
energy altering ecosystem structure and function (Mack 
& D’Antonio, 1998; Liao, et al., 2008; Ehrenfeld, 2010). 
Furthermore, invasive animal removals often result in the 
ecological release of invasive plants (e.g., Klinger, et al., 
2002; Zavaleta, et al., 2001). In order to protect island 
biodiversity and the essential ecosystem functions that it 
provides, plant invasions should be given more management 
attention. Yet eradication, the widely preferred alternative 
to control (Clout & Veitch, 2002; Burbidge, 2011), is often 
problematic for invasive plants.

Plant eradication is inherently more diffi  cult, and 
generally more expensive, than animal eradication due to 
persistent seed banks, although many advances have been 

made. Under the right conditions, seeds can persist for 
several hundred years or more (Jha, 2005). On the Pacifi c 
Islands of French Polynesia, Hawaii, and New Caledonia, 
eradication of the invasive alien tree Miconia calvescens 
has not yet been completed despite more than 15 years 
of intensive control, due to a prolifi c and persistent seed 
bank (Meyer, et al., 2011). Similar issues have plagued 
an eradication programme for Sagina procumbens on 
Gough Island in the South Atlantic, despite an impressive 
array of innovative control techniques (Cooper, et al., 
2011). Invasive plant eradication can be achieved, but it 
typically involves small populations, treated early in the 
invasion process, with a swift and strong response (Mack 
& Lonsdale, 2002; Rejmanek & Pitcairn, 2002).

Where eradication is not feasible, maintenance 
control may be implemented. Maintenance control is 
the “coordinated and consistent management of invasive 
plants in order to maintain the plant population at low 
levels” (University of Florida, 2018). This approach has 
been successful, but typically requires a large labour force, 
and critics question the sustainability and priority of these 
eff orts (Simberloff , 2009). Furthermore, targets for native 
cover vary widely and invasive cover targets are typically 
highly stringent. For example, a survey of 21 California 
habitat restoration plans containing specifi ed thresholds 
(gathered via a Google search) reveals native cover targets 
ranging from 15% to 90%, with an average target of 62% 
(n=20). Exotic cover targets, on the other hand, were never 
greater than 10% (n=7). It is also unclear how these targets 
were derived. Developing consistent and informed targets 
requires an understanding of how biodiversity varies with 
invader cover, however little is known about this topic. 

An important link between plant communities and the 
greater food web is the invertebrate fauna. Invertebrates 
are a key component of biodiversity, comprising 97% of all 
animal species (Spelman, 2012) and playing key roles in 
nutrient recycling, pollination, seed dispersal, energy fl ow, 
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and structuring plant and animal communities (Gullan & 
Cranston, 2005). They also respond quickly, sensitively, 
and locally to environmental changes (Kremen, et al., 
1993), and are thus excellent indicators of the consequences 
of plant invasions and other disturbances. Analysis of 
invertebrate responses to plant invasions can help delineate 
the drivers of biodiversity and community patterns, thus 
guiding the conservation and restoration of diverse native 
ecosystems (Lodge, 1993; McMahon, et al., 2006). 

We conducted a meta-analysis to investigate the 
eff ects of plant invasions on invertebrate diversity (as 
a whole, including both native and non-native species), 
incorporating invader cover and residence time in the 
system as potential explanatory variables. We also 
contrasted the type of sites (restored or intact) used as the 
native comparison. A meta-analysis approach can be used 
to combine multiple studies and detect overall trends in 
biotic responses to environmental factors. Our research 
suggests that in control eff orts, a little may go a long way.

METHODS

We compiled studies through both database queries 
and subsequent surveys of the references cited in compiled 
papers. We searched ISI Web of Science in November 
2012, using the search string “Topic = (invasive OR 
exotic AND plant) AND Topic = (arthropod* OR insect* 
OR invertebrate*). From these searches, we assembled 
106 published studies which compared insect, arthropod, 
or other invertebrate diversity in invaded versus native 
habitats. These studies were from both island and mainland 
environments and included dissertations. Studies included 
by richness and other diversity indices, which were 
analysed separately. We extracted the data directly from 
tables or from graphs using the programme DigitizeIt v. 1.5 
(Island Bormann, Braunschweig, Germany: <http://www.
digitizeit.de>). 

Fifty-four studies were eligible for testing using a 
meta-analysis approach (means, variances and sample 
sizes were reported) and are included in our meta-analysis 
(Appendix 1). These studies represent a variety of habitat 
types throughout the world, ranging from grassland to scrub 
to riparian. Fifty-two of these studies reported invertebrate 
richness, and fi fteen studies reported values for diversity 
indices incorporating evenness, with 12 reporting results 
for the Shannon index, two for the Simpson’s index, and 
one for Fisher’s alpha. Insects were the focus of 26 studies, 
while 16 studies reported results for entire arthropod 
assemblages, and 12 studies described results for other 
invertebrate groups.

We extracted descriptor variables, where available, from 
each study, including latitude, time since establishment of 
the non-native plant at both the local (study site) and/or 
regional (hundreds of square kilometres) scale, invader 
cover, and whether or not the native-dominated site was 
restored habitat. Where time since establishment was not 
reported for a given study, we obtained this information 
from other sources where possible. In order to utilise the 
studies which reported cover classes or ranges rather than 
exact values (over half of them), we placed invader cover 
into six cover classes.  We used natural breaks in the data 
to develop the following classes: <10%, 10–30%, 30–50%, 
50–70%, 70–90%, and >90%. Cover was thus considered 
‘absolute’ and not relative. Studies reporting that the 
invasive plant “formed a monoculture”, was “dense and 
continuous,” or “completely dominated the landscape” 
were conservatively classifi ed into the 70–90% group. We 
found that model results were not changed by reclassifying 
these into either 50–70% or >90% cover.

We used the response ratio as an estimator of 
eff ect size; in this case, the natural log of the ratio 

(Xexotic/Xnative), where X represents the mean of either 
invertebrate species richness or diversity index (analysed 
separately) for a given study in either the ‘exotic’ or the 
‘native’ locations. We chose the response ratio for several 
reasons: fi rst, we were interested in the magnitude of the 
relative diff erence in invertebrate diversity between exotic 
and native vegetation; second, use of the logarithm ensures 
that deviations in these two variables are treated equally 
(Hedges, et al., 1999). Lastly, it allowed us to assess both 
the model and residual variation, giving an estimate of the 
importance of the variables analysed here.

We calculated a single eff ect size per study by averaging 
data collected over multiple years or seasons. When we 
compared invertebrate richness or diversity in one native 
area to those in multiple invaded areas or vice versa, we 
calculated separate eff ect sizes for each comparison. When 
studies included multiple levels of descriptor variables 
(e.g. two or more establishment times), we calculated 
an average eff ect size to determine the overall eff ect of 
invasion (vs. native plant communities) but calculated 
separate eff ect sizes for each level of the descriptor 
variables when analysing the eff ects of these descriptor 
variables on invertebrate richness or diversity. 

We performed meta-analyses using the metafor 
(Viechtbauer, 2010) package for R 2.15.0, and used 
random eff ects models to calculate overall eff ect sizes for 
invertebrate richness and diversity (Viechtbauer, 2010; 
Gurevitch & Hedges, 1999). To estimate the variation in 
the eff ect size described by diff erent categorical variables 
(cover, study scale, and type of control plot), we used 
mixed-eff ects models using the Q statistic. This analysis 
treats the variables as fi xed but includes a random variance 
component to account for variability across the studies. 
In one case (invader cover), we also report results from 
a fi xed-eff ects model, which restricts our inferences to 
the studies examined. For continuous descriptor variables 
(latitude, invader time since establishment) we used 
weighted generalised least squares regression to test their 
relationships with eff ect size. 

After accounting for the variation attributable to 
descriptor variables, we estimated residual variation 
(τ2) using a restricted maximum likelihood estimator 
(Viechtbauer, 2005). For studies which reported results 
for all descriptor variable groups (22), we used the Akaike 
information criterion (AIC) to determine the model that 
best fi t the data. 

RESULTS

Invertebrate species richness was 31% lower in exotic 
plots than in native plots (eff ect size = -0.37 ± 0.10 on a 
0–1 scale; Z = -5.48, p < 0.01; Fig. 1). There was a high 
amount of variation in the studies using richness to indicate 
diversity, however (Q = 111, p < 0.001). Invertebrate 
diversity indices that incorporate evenness were less 
strongly aff ected than richness values, but still 14% lower 
in exotic plots (eff ect size = -0.15 ± 0.10; Z = -3.42, p < 
0.01). Unlike the eff ect sizes for species richness, there was 
not much variation among studies using diversity indices 
(Q = 13, p > 0.50). The absolute value of latitude did not 
explain a signifi cant amount of heterogeneity in eff ect sizes 
for species richness (Q = 1.09, p = 0.30), nor did study 
scale (Q = 0.06, p = 0.97). 

Using just data from native plots that had not undergone 
habitat restoration, invaded plots had lower invertebrate 
richness compared to native plots (-0.35 ± 0.07; Z = -5.02, 
p < 0.01). There was a stronger eff ect when plots restored 
to native species were used for comparison (-0.61 ± 0.17; 
Z = -1.73, p = 0.08), although this was just a statistical 
trend, likely due to both low sample size (n=11) and high 
variability. When analysed together, eff ect sizes were 
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signifi cantly more negative for the comparisons between 
invaded and restored sites than invaded vs. otherwise native 
sites (Q = 5.1, p = 0.02; Fig. 1), indicating that invertebrate 
diversity was even greater in restored plots than in native 
plots that did not undergo habitat restoration.

At the local scale, the negative eff ects of invasive 
plants on invertebrate richness were greatest at the shortest 
time since establishment and decreased with time, but 
this pattern relies on a few key data points and was only 
marginally signifi cant (Q = 3.0, p =0.08, Fig. 2). At the 
regional scale, time since invader establishment was not 
related to eff ect size (Q = 0.40, p > 0.50).  

The impact of exotic plants on invertebrate species 
richness was highly variable below 70% invader cover, and 
only cover classes above 70% had confi dence intervals that 
did not overlap zero (Fig. 1). When the cover classes below 
70% were combined into a single category, the diff erence 
in eff ect sizes between exotic plant cover classes was 
marginal in a mixed-model analysis (Q = 4.7, p = 0.09), 
while the groups were very diff erent when the data were 
fi tted to a fi xed eff ects model (Q = 176, p < 0.0001). 

In all models except time since establishment, residual 
heterogeneity was signifi cant (p < 0.01), indicating 
substantial amounts of variation in the eff ects that were not 
explained by the models. The eff ects of descriptor variables 
on eff ect sizes for diversity indices were not analysed, both 
because low sample sizes prevented it and because low 
residual heterogeneity obviated the need for it.

DISCUSSION

Our results showed a clear negative eff ect of plant 
invasions on invertebrate richness and diversity. This has 
important implications for the diversity and function of the 
system as a whole, since insects and other invertebrates 
perform so many important roles in an ecosystem – 
including food provisioning for higher trophic levels such 
as reptiles and amphibians, birds, and small mammals 
(Weisser & Siemann, 2004).

Furthermore, the most consistent and signifi cant 
negative eff ects of plant invaders on invertebrate richness 
occur when invasive plants comprise over 70% of cover. 
One likely reason for this threshold is a decline in the 
diversity of other plant species when an invader comes 
to dominate; for instance, Almeida-Neto, et al. (2011) 
found that only host plant richness explained the unimodal 
relationship they found between insect herbivore richness 
and invasive grass cover. Many previous studies have 
shown that insect and arthropod diversity is positively 
related to plant species richness, presumably owing to 
structural and food diversity as well as abiotic variables 
(e.g., temperature, moisture) (Price, et al., 2011). 

The implication of these results is that, in general, 
with a moderate reduction of invasive plant cover and 
restoration of native plants to at least 30% cover, we 
can achieve meaningful progress towards the goal of 
biodiversity conservation. While some invasive plants 
will have impacts below this threshold (e.g. Knapp, 
2014) this provides a general guideline in the absence of 
species-specifi c impact information. If a critical level of 
plant and invertebrate diversity can be maintained, then so 
can key ecosystem functions such as nutrient cycling and 
pollination (Gullan & Cranston, 2005).

Many will be legitimately concerned about indefi nite 
“maintenance management” of plant invaders. Invasive 
plant management is challenging, and requires a long-
term commitment (e.g. Mack & Lonsdale, 2002; Meyer, 
et al., 2011). However, holding that 70% line by removing 
invaders and, when needed, restoring at least 30% native 
plant cover will buy time, both: 1) to allow the islands’ 
insect herbivores to adjust to using the invader, and 2) for 
managers to continue improving plant control technologies 
and eradication strategies. We elaborate on these points 
below.

A novel plant species may be avoided by insect  
herbivores because it diff ers from native plants in 
characteristics such as nutritional quality, chemical 
composition, and architecture (Strong, et al., 1984; Kuhnle 
& Muller, 2009). Even a plant that can technically be eaten 
may be avoided because it is not recognised as a food source 
(Lankau, et al., 2004; Dudley, et al., 2012). The number of 
diff erent herbivores using a novel plant tends to increase 
with the invader’s time since establishment, however 
(Kennedy & Southwood, 1984; Brandle, et al., 2008). 

Fig. 1 Mean invertebrate richness effect sizes (± 95% 
confi dence limits) across all studies (top panel), as 
well as between studies contrasting effect sizes where 
native plots represented restored or intact habitats 
(middle panel). The bottom panel shows mean richness 
effect sizes for exotic plant cover classes. Numbers in 
parentheses indicate the number of effect sizes and the 
total number of studies, respectively (some studies had 
more than one comparison).

Fig. 2 Relationship between effect size for invertebrate 
richness and time since invader establishment at a site 
for the 22 studies for which these data were available. 
Dashes indicate line of best fi t.

Knapp, et al.: Controlling invasive plants
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In our meta-analysis, where we consider the richness of 
invertebrates as a whole including multiple feeding guilds 
in addition to herbivores, we found a trend for invertebrate 
richness to increase with time since invader establishment 
(Fig. 2). This eff ect was only marginally signifi cant – 
perhaps because it was driven by just a few key points, or 
perhaps because the eff ect of residence time is not as strong 
for invertebrates as a whole as it is for insect herbivores 
alone.

While these natural enemies are adapting to utilise 
invasive plant species over time, our control techniques are 
improving – allowing for both larger and more effi  cient, 
eff ective projects. For instance, a transition from ground 
to helicopter shooting enabled the eradication of goats on 
Western Australian islands (Burbidge & Morris, 2002), as 
did Judas goat technologies (Campbell & Donlan, 2005). 
Aerial surveys help with plant detection and eradication as 
well (Coulston, 2002; Knapp, et al., 2011), and treatment 
techniques have improved to avoid vectoring plant material 
(Coulston, 2002). Experimentation with techniques from 
hand-pulling to herbicide to heat and saltwater applications 
have improved the effi  cacy of invasive grass control eff orts 
on Laysan Island (Flint & Rehkemper, 2002). Similarly, 
better herbicides and mapping systems have improved 
invasive plant control in New Zealand (Wotherspoon & 
Wotherspoon, 2002). Improvement in baiting technology 
has enabled the eradication of rats in multiple locations 
(Thomas & Taylor, 2002; Howald et al., 2007). Lastly, 
targeting multiple species at one time has proven to be both 
effi  cient and eff ective (Griffi  ths, 2011; Morrison, 2011).

It is heartening that our results showed restored plots 
containing even more invertebrate species than other 
native plots relative to invaded plots (although with 
greater variability). Flower visitors can be more diverse 
at restoration than reference sites, even after < one year 
(Waltz & Covington, 2004; Lomov, et al., 2010). This may 
be because early-colonising butterfl ies can be attracted 
to more open, sunny restored areas disturbed by earth 
moving, invasive plant removal, and outplanting (Magoba 
& Samways, 2010; Hanula & Horn, 2011a). Conversely, 
butterfl y richness can decrease as percent plant cover rises 
(Florens, et al., 2010). Higher invertebrate richness in 
restored areas is likely also related to greater plant richness 
and cover (Hanula & Horn, 2011), perhaps due to elements 
of both early- and later-successional communities being 
present. In this case, richness would also decrease with 
time as succession occurs.

CONCLUSION

The theme of this conference is “Scaling Up to Meet 
the Challenge.” Invasive species eradication successes 
are being achieved at ever-increasing scales, but more 
attention should be paid to the signifi cant threat of plant 
invasions. Although invasive plant control is challenging, 
our research suggests that reducing invader density to just 
70% cover can have signifi cant benefi ts for invertebrate 
biodiversity and thus ecosystem function. Furthermore, 
habitat restoration can give that diversity an extra boost. 
While the existence of seed banks dictates that this is a 
long-term proposition, we argue that, over time, insect 
herbivores will adapt to using the invader, while land 
managers develop ever-better control technologies. 
The biodiversity that is thus conserved will increase 
the resistance and resilience of these systems to further 
invasion and other stressors such as global climate change 
(Millennium Ecosystem Assessment, 2003; Haddad, et al., 
2011), and allow us to truly achieve island conservation.
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