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Patterns of genetic structure in highly mobile marine vertebrates may be accompanied by phenotypic variation. Most 
studies in marine turtles focused on population genetic structure have been performed at rookeries. We studied whether 
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genetic and morphological variation of the endangered green turtle (Chelonia mydas) is consistent geographically, 
focusing on foraging grounds. An association between population genetic structure and body shape variation at broad 
(inter-lineage) and fine (foraging grounds) scales was predicted and analysed using mitochondrial DNA and geometric 
morphometrics. Although genetic and phenotypic differentiation patterns were congruent between lineages, no fine-scale 
association was found, suggesting adaptive divergence. Connectivity among Pacific foraging grounds found here suggests 
that temperatures of ocean surface currents may influence the genetic structure of C. mydas on a broad scale. Our results 
suggest that vicariance, dispersal, life-history traits and ecological conditions operating in foraging grounds have shaped 
the intraspecific morphology and genetic diversity of this species. Considering a range of geographic and temporal scales 
is useful when management strategies are required for cosmopolitan species. Integrating morphological and genetic tools 
at different spatial scales, conservation management is proposed based on protection of neutral and adaptive diversity. 
This approach opens new questions and challenges, especially regarding conservation genetics in cosmopolitan species.

ADDITIONAL KEYWORDS:   conservation genetics – evolutionary potential – foraging grounds – geometric 
morphometrics – morphotypes – natal homing behaviour – natural selection – phenotypic variation.

INTRODUCTION

Climate, behavioural, ecological and oceanographic 
factors have shaped the geographic distribution and 
population structure of marine biodiversity in the 
absence of obvious physical barriers (Palumbi, 1994; 
Jensen et al., 2019). Although there are examples of 
genetic homogeneity over long distances in marine 
systems (Lessios et al., 1998; Lessios & Robertson, 
2006; Crandall et al., 2010), other studies have shown 
population structure in species with high dispersal 
potential (Viaud-Martinez et al., 2008; Ansmann et al., 
2012; Viricel & Rosel, 2014; Van Cise et al., 2019; 
Jensen et al., 2019).

In highly mobile marine vertebrates without a larval 
phase (e.g. marine mammals and reptiles), gene flow 
between populations is determined by behaviour and 
ecology (Ansmann et al., 2012; Dutton et al., 2014a; 
Viricel & Rosel, 2014). Factors such as geographic 
isolation, genetic drift and adaptive divergence may 
lead to small-scale population structuring (Ansmann 
et al., 2012; Moura et al., 2014). Patterns of genetic 
structure may be accompanied by phenotypic 
variation, including different ecotypes (e.g. prey 
specialization, social systems and vocal behaviour) 
and/or morphotypes (e.g. pigmentation, external body 
structure and shape) (Viaud-Martinez et al., 2008; 
Moura et al., 2014; Viricel & Rosel, 2014; Van Cise 
et al., 2019).

Marine turtles are migratory species with a complex 
life history that includes adult migration from foraging 
grounds (FGs) to distant breeding areas (rookeries) 
and ontogenetic changes that affect the distribution of 
juveniles in a variety of marine habitats (Jensen et al., 
2013). The green turtle (Chelonia mydas Linnaeus, 
1758)  has a circumglobal distribution extending 
throughout tropical and subtropical waters, including 
hundreds of rookeries and FGs interconnected by a 
complex network of migratory routes (Avise & Bowen, 
1994; Jensen et al., 2013). Chelonia mydas exhibits 

strong natal homing: individuals return to their region 
of origin for mating and nesting, resulting in rookeries 
that are genetically differentiated (Allard et al., 1994; 
Bowen & Karl, 2007). Conversely, FGs frequently 
aggregate individuals from multiple natal origins 
(Amorocho et al., 2012; Jensen et al., 2013; Piovano 
et al., 2019).

Extensive morphological variation has been 
described for C. mydas populations globally, including 
variation in carapace length, carapace scute patterns, 
skull morphology and flipper size, among others 
(Kamezaki & Matsui, 1995; Wyneken et al., 1999; 
Nishizawa et al., 2010; Seminoff et al., 2015; Coelho 
et al., 2018). Nevertheless, only two morphotypes, 
black and light (based on pigmentation and carapace 
shape), have been widely recognized (Pritchard & 
Mortimer, 1999; Amorocho et al., 2012; Sampson et al., 
2014, 2015; Zárate et al., 2015). Rookeries of these 
morphotypes seem to be reproductively isolated in the 
Pacific Ocean (Dutton et al., 2014a; Jensen et al., 2019), 
but there are FGs such as Galapagos, Costa Rica, 
Colombia and Japan where both morphotypes exist 
sympatrically (Hamabata et al., 2009; Amorocho et al., 
2012; Heidemeyer et al., 2014; Zárate et al., 2015).

In  a  prev ious  s tudy  based  on  geometr i c 
morphometrics, the carapace shape variation of 
C.  mydas was investigated using individuals of 
three distinct genetic lineages and five FGs from the 
Pacific and south-western Atlantic Oceans (Álvarez-
Varas et al., 2019). This study showed the existence 
of three morphotypes based on carapace shape, which 
were concordant with the genetic lineages (Atlantic, 
western Pacific and eastern Pacific). These results 
suggested a significant neutral genetic component of 
carapace shape at a broad geographic scale. Álvarez-
Varas et al. (2019) also showed well-differentiated 
morphological groups associated with distinctive FGs. 
However, genetic differentiation among FGs was not 
evaluated in this study, thus the influence of neutral 
genetic processes on carapace shape variation and 
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other morphological traits at a fine scale (within FGs) 
remains unknown.

Studying the distribution of genetic diversity and 
intraspecific morphology is crucial to understanding 
ecological and evolutionary processes, as well as for 
biodiversity conservation and management (Avise, 
2009; Amaral et  al., 2012; Jensen et  al., 2019). 
Whether the genetic and morphological variation of 
the endangered populations of C. mydas is consistent 
in a geographic context is here studied, and based 
on this information, conservation and management 
recommendations are provided. Given previous results 
indicating a significant neutral genetic component in 
the carapace shape variation of C. mydas (Álvarez-
Varas et al., 2019), a positive association between 
population genetic structure and body shape variation 
at wide (inter-lineage) and fine (among FGs) scales 
is predicted. The genetic differentiation patterns 
between lineages and FGs are expected to agree with 
morphological trait differentiation, using greater 
sampling effort and the estimation of population 
genetic parameters. Specifically, the diversity and 
genetic structure of C. mydas was analysed using 
mitochondrial DNA (control region) of individuals from 
ten FGs distributed across the Pacific and south-west 
Atlantic Oceans, and the morphological differentiation 
among populations was examined using geometric 
morphometrics of six external body traits (including 
carapace, plastron, head and flipper).

MATERIAL AND METHODS

Study area and turtle capture

This study included C. mydas FGs located in the 
south-west Atlantic region (Uruguay); south-central/
western Pacific (Fiji and New Zealand, respectively) 
and eastern Pacific (from north to south: Mexico, 
Costa Rica, Galapagos, Peru and Chile) (Fig. 1). Details 
on specific locations and permits are shown in the 
Supporting Information, Table S1.

Sample collection and genetic analyses

Blood was collected from the dorsal cervical sinus 
and skin samples were collected using a biopsy punch 
or a sterile scalpel from the neck or inguinal area 
(approximately 1 mL of blood and 5 mm diameter 
of tissue was taken; Álvarez-Varas et al., 2017). All 
samples (N = 314) were stored in 90% ethanol or 
saturated salt solutions. DNA was isolated using the 
salting-out protocol of Aljanabi & Martínez (1997). 
The control region of mitochondrial DNA (mtDNA) 
was amplified using primers LCM15382 and H950g 
designed by Abreu-Grobois et al. (2006). The reactions 
were carried out following Álvarez-Varas et al. (2017). 

Products of PCR were visualized using electrophoresis 
on 1% agarose gels with GelRed Nucleic Acid Stain 
(Biotium), purified and sequenced bidirectionally by 
Macrogen Inc. (Seoul, South Korea). Except for the 
Fiji samples (which were removed from subsequent 
analyses due to unsuccessful amplification), analyses 
were successful in all cases. Analyses were carried 
out at the Laboratorio de Biodiversidad Molecular, 
Pontificia Universidad Católica de Chile, Santiago, 
Chile, and at the Centro de Investigación en Biología 
Celular y Molecular, Universidad de Costa Rica, 
San José, Costa Rica (samples from Galapagos and 
Costa Rica).

Raw sequences were edited manually and 
polymorphic sites were identified in the sequence 
chromatograms using SEQUENCHER v.5.4.6 
(Gene Codes Corporation, Ann Arbor, MI, USA). 
Sequences were truncated to a standard length 
of 765 bp. Sequences were aligned using ClustalX 
v.2.1 (Thompson et al., 1997), and haplotypes were 
identified using the BLAST tool implemented in the 
GenBank database (National Center for Biotechnology 
Information, USA: NCBI Home page http://www.ncbi.
nlm. nih.gov).

Phylogenetic analyses and natal origin 
classification

Given that FGs host individuals with multiple 
origins, the haplotype of each individual was first 
identified and then classified according to its 
genetic lineage, defined here as ‘natal origin’. Thus, 
genetic lineage or natal origin refers to the origin 
of each individual according to its control region 
haplotype (not corresponding to rookery, which is 
limited to a specific reproductive colony; see below: 
ATGL, SC/WPGL, NC/EPGL). Regions represent the 
geographic areas where FGs are located (Atlantic, 
western Pacific, south-central Pacific and eastern 
Pacific regions).

Some Pacific FGs host individuals with different 
genetic lineages (Álvarez-Varas et al., 2019). In order 
to corroborate extant genetic lineages of C. mydas in 
the Pacific Ocean and then to assign a natal origin 
to each individual from FGs with greater accuracy, 
a phylogeny was reconstructed using a total of 241 
haplotypes retrieved from GenBank for this ocean 
basin (recovered from rookeries and FGs; Supporting 
Information, Table S2). Given that individuals from 
the Atlantic FG (Uruguay) only had haplotypes 
corresponding to the ‘southern Atlantic lineage’ 
(CMA5.1 and CMA8.1; Shamblin et al., 2012), all 
turtles in this study from Uruguay were grouped into 
the ‘Atlantic genetic lineage’ (ATGL) and haplotypes 
from the Atlantic Ocean were excluded from the global 
phylogeny.
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Furthermore, to determine the evolutionary 
relationships between haplotypes found in FGs of this 
study, phylogenetic trees were inferred using haplotypes 
identified in our samples from the Pacific and Atlantic 
Oceans (35 haplotypes in a total of 314 samples). We 
inferred phylogenetic trees using maximum likelihood 
and Bayesian inference, with the flatback sea turtle 
(Natator depressus) used as the outgroup (Duchene 
et al., 2012) (sister-species, GenBank U40662). The 
software IQTree v.1.7. J (Nguyen et al., 2014) was 
used to infer maximum likelihood trees, as well 
as the substitution nucleotide model, and branch 
support assessed with 1000 bootstraps. According to 
the Bayesian information criterion (BIC) the best-fit 
substitution models were TIM+F+I+G4 (transition 
model with unequal nucleotide frequencies; Rodríguez 
et al., 1990) and HKY+F+I+G4 (Hasegawa–Kishino–
Yano model, unequal transition/transversion rates 

and unequal nucleotide frequencies; Hasegawa et al., 
1985), for the global (241 haplotypes) and specific 
(35 haplotypes) datasets, respectively. Bayesian 
phylogenetic trees were inferred with BEAST v.2.6.0 
(Bouckaert et al., 2014) using a strict clock model of 
0.01751 subs/site/my (Dutton et al., 2014a), and the 
Yule model of speciation for tree branching. The best-fit 
model of substitution was HKY+G4 for both the global 
and specific datasets (most similar available model 
to the best model selected by IQTree). Two Markov 
chain Monte Carlo chains were run for 100 million 
generations and sampled each 10 000 generations for 
the global dataset, and 50 million generations for the 
specific dataset. Proper mixing and convergence of 
the chains were assessed with the program TRACER 
v.1.7.1 (Rambaut et al., 2014). The maximum clade 
credibility tree was extracted using TreeAnnotator 
v.2.6.0.
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Figure 1.  Map depicting the Chelonia mydas foraging grounds located in the south-western Atlantic and Pacific Ocean, 
and the main Pacific surface current systems. Source: own elaboration with data from Tomczak & Godfrey (2013). Red 
arrows refer to warm currents and blue arrows to cold currents. Pie charts indicate the proportions of each lineage within 
the foraging grounds. NPC, North Pacific Current; SPC, South Pacific Current; NEC, North Equatorial Current; SEC, 
South Equatorial Current; CEC, Counter Equatorial Current; CC, California Current; KC, Kuroshio Current; EAC, East 
Australian Current; PC, Peru Current; ATGL, Atlantic genetic lineage; SC/WPGL, south-central/western Pacific genetic 
lineage; NC/EPGL, north-central/eastern Pacific genetic lineage; UR, Uruguay; NZ, New Zealand; FI, Fiji; EI, Easter Island 
(Chile); ME, Mexico; CR, Costa Rica; GA, Galapagos (Ecuador); PE, Peru; AR, Arica (Chile); BS, Bahia Salado (Chile).

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/article/191/2/434/5868895 by The U

niversity of the South Pacific user on 04 M
arch 2021



438  R. ÁLVAREZ-VARAS ET AL.

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 191, 434–453

Genetic diversity and phylogeographic 
structure

In order to visualize genetic diversity and possible 
geographic association among haplotypes, a median-
joining network (MJN) was constructed in PopArt 
(Bandelt et al., 1999) using the 35 haplotypes found 
in the 314 samples analysed in this study. The MJNs 
were constructed according to natal origin and FG.

Considering information recovered from phylogenetic 
analyses and MJN, populations were grouped into 
genetic lineages or natal origins (i.e. wide-scale: 
Atlantic-ATGL, south-central/western Pacific-SC/
WPGL and north-central/eastern Pacific-NC/EPGL) 
and FGs within each genetic lineage (i.e. fine scale) for all 
subsequent analyses. Genetic diversity was estimated 
by calculating the following summary statistics in 
ARLEQUIN v.3.5 (Excoffier & Lischer, 2010): number of 
polymorphic sites (S), haplotype number (h), haplotype 
diversity (Hd) and nucleotide diversity (π) for each 
genetic lineage and FG within each lineage. Population 
structure was assessed using pairwise FST for each 
pair of genetic lineages and FGs in ARLEQUIN v.3.5 
software (Excoffier & Lischer, 2010).

Shape analysis

For geometric morphometrics (GM) analyses, 
populations were also grouped according to genetic 

lineages (ATGL, SC/WPGL and NC/EPGL) and FGs 
within each lineage. All FGs were included except 
Arica-Chile in these analyses (see details in Supporting 
Information, Table S1).

The shape of six morphological traits was 
measured: dorsal view of shell (‘carapace’, N = 540), 
ventral view of shell (‘plastron’, N = 399), dorsal 
view of right flipper (‘flipper’, N  =  247), dorsal  
view of head (‘dorsal head’, N   =  233), lateral  
right view of head (‘right head’, N = 370) and lateral  
left view of head (‘left head’, N = 374). All photographs 
were obtained using a reference scale and landmarks 
were digitalized with TPS Dig 2.30 software (Rohlf, 
2017). The number and location of landmarks of each 
structure were established according to Casale et al. 
(2017) (Fig. 2). A Procrustes superimposition was 
applied to the landmark data in order to remove any 
non-shape variation (Rohlf & Slice, 1990).

Multivariate regressions were carried out for  
each trait to determine the influence of size on 
shape (allometry) in each dataset using centroid 
size (size variable) as an independent variable 
and shape (Procrustes coordinates) as a dependent 
variable (Klingenberg, 2016). A permutation test 
using 10 000 iterations was performed to assess the 
significance of the influence of size on shape (for an 
example in carapace allometry, see: Álvarez-Varas 
et al., 2019).
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Figure 2.  Representation of the landmarks identified on six different body structures of Chelonia mydas.
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A principal component analysis (PCA) was performed 
using the covariance matrices of shape variation and 
the average shape variation between and within 
genetic lineages (i.e. between FGs). A canonical variate 
analysis (CVA) was performed to obtain a graphic 
representation of the data and to discriminate groups 
based on shape variation in different genetic lineages 
and FGs. Canonical variate analysis is a multivariate 
statistical method used to find the shape characters 
that best distinguish among groups of specimens. The 
results were reported as Procrustes distances and 
Mahalanobis distances and the respective P-values 
for these distances after permutation tests (10 000 
iterations).

Finally, a Procrustes ANOVA was carried out for each 
structure to assess the significance of the differences 
in shape between genetic lineages and between FGs. 
All analyses were performed using MorphoJ software 
(Klingenberg, 2011).

RESULTS

Phylogenetic analyses and natal origin 
classification

Bayesian and maximum likelihood (ML) phylogeny 
of the global dataset (241 haplotypes) reveal the 
presence of five well-supported clades associated 
with the south-central Pacific and western Pacific 
haplotypes (SC/WPGL), and one major clade 
grouping the north-central Pacific and eastern Pacific 
haplotypes (NC/EPGL) (Fig. 3). Maximum likelihood 
and Bayesian phylogeny of our specific dataset (314 
samples) (Fig. 4A) found four clades for the SC/
WPGL haplotypes, three subclades within a major 
clade grouping the NC/EPGL haplotypes and also 
one clade grouping the Atlantic haplotypes (ATGL; 
haplotypes not included in the global dataset). The 
314 individuals sequenced in this study represent 35 
haplotypes; two were classified into the ATGL (N = 
14), 11 were classified into the SC/WPGL (N = 89) 
and 22 into the NC/EPGL (N = 211) according to our 
phylogenetic analyses (Table 1; Figs 3, 4).

Phylogeographic analyses based on the 
specific dataset

The MJN according to natal origin using the 
specific dataset (35 haplotypes) is coincident with 
the phylogeny, since it exhibits one haplogroup for 
the ATGL haplotypes, four haplogroups for the SC/
WPGL haplotypes and one major haplogroup for the 
NC/EPGL haplotypes (subclades were not observed) 
(Fig. 4B). These six haplogroups are well separated 
by several mutation steps (Fig. 4B). Haplotypes from 
SC/WPGL are more differentiated than those within 

NC/EPGL. In addition, the last haplogroup shows a 
star-like network topology represented by a few highly 
frequent central haplotypes and various haplotypes 
of low frequency (Fig. 4B). By contrast, the MJN 
according to FGs does not exhibit a relationship with 
the clades (data not shown). Individuals from Pacific 
FGs have haplotypes corresponding to different 
lineages, supporting multiple origins (Figs 3, 4). In 
the Atlantic, turtles exhibit only two haplotypes that 
belong to the southern Atlantic lineage (see Methods 
section; Fig. 4).

The number of haplotypes per genetic lineage and 
FG, and genetic and nucleotide diversity values are 
shown in Table 1. Haplotype frequencies are included 
in the Supporting Information, Table S3. Given the 
small sample size associated with SC/WPGL, all 
haplotypes were included in a single group. The NC/
EPGL shows the highest haplotype diversity, followed 
by SC/WPGL and ATGL (Table 1). The highest values 
of haplotype diversity for NC/EPGL are found in Chile 
and for the SC/WPGL are found in Costa Rica and 
New Zealand (Table 1). The most common haplotypes 
for the NC/EPGL are CmP4.1, CmP4.6, CmP4.7; for 
the SC/WPGL: CmP97.1 and CmP47.1, and for ATGL: 
CmA8.1 (Supporting Information, Table S3; Fig. 4). 
Pacific FGs, where both genetic lineages (NC/EPGL 
and SC/WPGL) are present, exhibit lower haplotype 
diversity compared to other FGs studied (considering 
genetic lineages separately; Table 1).

Pairwise genetic difference (FST) results show 
significant values among all genetic lineages (FST 
values between 0.7644 and 0.9607; P-value < 0.0001). 
Moreover, significant differences are observed in New 
Zealand compared to other FGs within the SC/WPGL; 
Mexico is different from the other sites within the NC/
EPGL (P < 0.05; Fig. 5).

Shape analysis

The results associated with geometric morphometrics 
analyses according to genetic lineages and FGs are 
shown in Table 2. Between genetic lineages (i.e. 
broad scale), morphometrics analyses show high 
differentiation for all traits except for the flipper 
(Fig. 6; Table 2). At a fine scale, SC/WPGL exhibits 
well-differentiated groups for all traits (Fig.  7; 
Table 2). In contrast, NC/EPGL shows a pattern of 
differentiation only for the carapace and plastron. 
The remaining views show high dispersal and 
overlap between FGs within this lineage (Fig. 8; 
Table 2).

Mahalanobis and Procrustes distances are significant 
in all cases when genetic lineages are compared; in 
almost all cases within SC/WPGL and only in a few 
cases within NC/EPGL (P < 0.05; Table 2). Procrustes 
ANOVA show statistical significance for centroid size 
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Figure 3.  Bayesian phylogenetic reconstruction of Chelonia mydas control region haplotypes from the Pacific Ocean 
(765 bp, 241 haplotypes retrieved from Genbank). SC/WPGL, south-central/western Pacific lineage; NC/EPGL, north-
central/eastern Pacific lineage; Rookery, haplotype reported in rookeries (i.e. known rookery of origin); Foraging Ground, 
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that has been described as ‘orphan’ in published literature (i.e. unknown rookery of origin, based on previous studies); This 
study, haplotype reported in a foraging ground included in this study.

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/article/191/2/434/5868895 by The U

niversity of the South Pacific user on 04 M
arch 2021



MORPHOLOGY AND GENETIC OF CHELONIA MYDAS  441

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 191, 434–453

and shape for all comparisons except for the plastron 
comparing FGs within NC/EPGL (P < 0.05; Table 2).

DISCUSSION

Our study suggests that gene-flow barriers, ecological, 
behavioural, climatic and oceanographic factors, have 
shaped the geographic distribution, population genetic 
structure and morphological variation of C. mydas. 
Contrary to our predictions, the lack of coincidence 
between genetic and phenotypic differentiation patterns 
at a fine scale found, provides insights on a potential 
adaptive divergence in this cosmopolitan species. Our 
results integrating genetic and morphological data 
allow us to propose two management levels for this 
endangered species globally.

A broad-scale picture: Chelonia mydas lineages 
and genetic diversity in the Pacific and 

Atlantic Oceans

Despite the slight differences between phylogenetic 
trees based on the two datasets (which could be due 
to the sampling coverage), overall our results were 
congruent with previous phylogeographic studies in 

the Pacific Ocean (Dutton et al., 2014a; Jensen et al., 
2019). Likewise, MJN agreed with phylogenies, and 
results for NC/EPGL supported the recent colonization 
of the eastern Pacific region previously suggested by 
Dutton et al. (2014a) and Jensen et al. (2019). Our data 
was also in accordance with the results of Jensen et al. 
(2019) for the Atlantic Ocean (CmA8.1 being the most 
common haplotype) and the results of Dutton et al. 
(2014a), who also reported CmP4.1, CmP4.6, CmP4.7 
as the most frequent haplotypes for NC/EPGL.

Genetic diversity values found in Uruguay were 
below those reported for other FGs in this region 
(Naro-Maciel et  al., 2007; Proietti et  al., 2012; 
Prosdocimi et al., 2012), which is probably due to 
the small sample size used in this study (N = 14). 
In contrast, genetic diversity in the FGs from the 
Pacific region studied here was higher than in other 
sites reported for this ocean basin (Table 1), even 
considering that the individuals were separated 
according to clades (SC/WPGL and NC/EPGL) within 
each FG.

The greater diversity in FGs where there is only 
one lineage (i.e. Arica in Chile and Bahia Salado in 
Mexico) could imply habitat-use segregation, which 
has been observed between different size classes 
(Ballorain et al., 2010) and also has been proposed 
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Figure 4.  Phylogeographic analyses of Chelonia mydas control region haplotypes from Pacific and south-western Atlantic 
Oceans (this study: 765 bp, 35 haplotypes). A, Bayesian phylogenetic reconstruction. Posterior probability support values 
are shown at nodes. B, median-joining network (MJN) according to genetic lineages. More than two mutation sites are 
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genetic lineage; NC/EPGL, north-central/eastern Pacific genetic lineage.
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for both morphotypes of C. mydas (yellow and black; 
putative genetic lineages) by some authors (Seminoff 
et  al., 2002; Amorocho & Reina, 2007; Sampson 
et al., 2014, 2015; Zárate et al., 2015). However, this 
hypothesis should be tested in future studies.

Our results also showed higher genetic diversity at 
higher latitudes in the Southern Hemisphere (Chile 
and New Zealand). However, there is one previous 
study in the Pacific (Australia; Jensen et al., 2016) 

where an inverse pattern was observed (i.e. lowest 
values of genetic diversity in the southernmost 
FGs). Although these opposing patterns could be 
associated with the geographic scale in which the 
analyses were made, future genetic studies involving 
a greater number of FGs will allow corroboration 
of the presence of a latitudinal pattern, as well as 
prioritizing specific conservation areas based on high 
genetic diversity.

Table 1.  Mitochondrial control region diversity of Chelonia mydas in foraging grounds of this study, compared to other 
Pacific foraging grounds from published literature. For this study, the region represents the genetic lineages based on 
the control region haplotypes (Atlantic genetic lineage, south-central/western Pacific genetic lineage and north-central/
eastern Pacific genetic lineage) of individuals from foraging grounds. Conversely, for the other studies, the region 
corresponds to the geographic location of foraging grounds. N, sample size; S, polymorphic sites; H, number of haplotypes; 
h, haplotype diversity; π, nucleotide diversity

Foraging ground N S H h (±SD) π (±SD) Reference

South-western Atlantic Region
Uruguay 14 2 2 0.2637 ± 0.1360 0.0007 ± 0.0006 This study
Subtotal 14 2 2 0.2637 ± 0.1360 0.0007 ± 0.0006 This study

South-central & western Pacific Region
Costa Rica 20 46 7 0.7789 ± 0.0820 0.0169 ± 0.0089 This study
Galapagos (Ecuador) 25 46 5 0.5733 ± 0.1040 0.0097 ± 0.0052 This study
Peru 1 0 1 - - This study
Easter Island (Chile) 15 13 3 0.4476 ± 0.1345 0.0059 ± 0.0035 This study
New Zealand 28 56 9 0.6243 ± 0.1004 0.0185 ± 0.0095 This study
Subtotal 89 56 11 0.7669 ± 0.0360 0.0166 ± 0.0084 This study
Yaeyama (Japan) 142 - 24 0.8360 ± 0.0220 0.0334 ± 0.0167 Nishizawa et al. 2013
Ginoza (Japan) 20 - 9 0.8790 ± 0.0430 0.0347 ± 0.0182 Nishizawa et al. 2013
Kanto (Japan) 145 - 8 0.7070 ± 0.0460 0.0288 ± 0.0148 Nishizawa et al. 2013
Torres Strait (Australia) 99 - 14 0.6050 ± 0.0551 0.0136 ± 0.0069 Jensen et al. 2016
Clack Reef (Australia) 45 - 15 0.8687 ± 0.0332 0.0206 ± 0.0104 Jensen et al. 2016
Howicks Group (Australia) 76 - 16 0.8256 ± 0.0264 0.0212 ± 0.0106 Jensen et al. 2016
Edgecombe Bay (Australia) 85 - 9 0.4807 ± 0.0615 0.0141 ± 0.0072 Jensen et al. 2016
Shoalwater Bay (Australia) 90 - 7 0.2624 ± 0.0592 0.0082 ± 0.0044 Jensen et al. 2016
Moreton Bay (Australia) 42 - 8 0.3844 ± 0.0954 0.0074 ± 0.0040 Jensen et al. 2016
Palmyra Atoll (USA) 349 - 19 0.6190 ± 0.0230 0.0090 ± 0.0050 Naro-Maciel et al. 2014

North-central & eastern Pacific Region
Mexico 52 8 8 0.7255 ± 0.0431 0.0018 ± 0.0013 This study
Costa Rica 32 18 11 0.8024 ± 0.0527 0.0028 ± 0.0018 This study
Galapagos (Ecuador) 54 15 10 0.7813 ± 0.0307 0.0021 ± 0.0014 This study
Peru 14 2 3 0.6593 ± 0.0724 0.0013 ± 0.0011 This study
Arica (Chile) 27 17 9 0.8604 ± 0.0403 0.0030 ± 0.0019 This study
Bahia Salado (Chile) 15 7 6 0.8190 ± 0.0636 0.0019 ± 0.0014 This study
Easter Island (Chile) 4 4 4 1.0000 ± 0.1768 0.0026 ± 0.0022 This study
New Zealand 13 13 7 0.8718 ± 0.0670 0.0035 ± 0.0022 This study
Subtotal 211 28 22 0.8258 ± 0.0144 0.0025 ± 0.0016 This study
Gorgona (Colombia) 55 - 7 0.3000 ± 0.0800 0.0110 ± 0.0060 Amorocho et al. 2012
Galapagos (Ecuador) 61 - 11 0.7340 ± 0.0234 0.0010 ± 0.0010 Chaves et al. 2017
Machalilla (Ecuador) 43 - 10 0.7490 ± 0.0511 0.0040 ± 0.0027 Chaves et al. 2017
Hawaii (USA) 788 - 6 0.4640 ± 0.0180 0.0030 ± 0.0020 Dutton et al. 2008
TOTAL 314 86 35 - - This study
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Population genetic structure in the Pacific 
Ocean suggest an influence of surface ocean 

currents

Foraging ground genetic structuring patterns within 
each Pacific C. mydas lineage may provide insights 
into the influence of ocean currents on the large-scale 
dispersal of this species. It has been widely described 
that ocean surface currents influence sea turtle 
migrations in all size classes (Luschi et al., 1998; 
Craig et al., 2004; Bass et al., 2006; Okayuma et al., 
2009; Proietti et al., 2012). For instance, Naro Maciel 
et al. (2007) and Proietti et al. (2012) suggested that 
dispersal of C. mydas hatchlings and juveniles from 
Ascension Island to South America are influenced by 
major equatorial currents of the Atlantic Ocean. Using 
genetic and Lagrangian drift data, Amorocho et al. 
(2012) observed that equatorial currents may be an 
important vehicle for dispersal of turtles from western 
to eastern Pacific regions. Some studies in neonate 
sea turtles have demonstrated that transoceanic 
Atlantic migrations coincide with the North Atlantic 
Subtropical Gyre, a warm-water current system 
(Putman et al., 2012; Mansfield et al., 2014).

Our results for turtles from the NC/EPGL showed 
genetic differentiation only in Mexico, which may 
suggest movement segregation between the Northern 
and Southern Hemispheres probably modulated by the 
predominant surface ocean currents, the North Pacific 
and South Pacific Gyres (Fig. 1). Similar results were 
obtained by Goetze (2005), who studied two sympatric, 
circumglobal zooplankton species throughout their 
global biogeographic ranges and observed that habitat 
discontinuities at the boundaries of subtropical gyres 

in the North and South Pacific acted as effective 
barriers in both species. The genetic homogeneity 
between New Zealand and the rest of the FGs located 
in the Southern Hemisphere may provide insights 
into the influence of colder currents on NC/EPGL 
turtle dispersal. In particular, the South Pacific 
Current, an extension of the East Australian Current, 
may facilitate movements in a west–east direction 
(Chaigneau & Pizarro, 2005) from New Zealand to 
South America.

The genetic differentiation found in New Zealand 
for SC/WPGL turtles suggests these animals do not 
disperse through the cold South Pacific Current, and 
thus would present segregation modulated by warm 
equatorial currents (e.g. North and South Equatorial 
Currents and Equatorial Counter Current) (Tomczak 
& Godfrey, 2013; Fig. 1).

As ectotherms, sea turtles are particularly sensitive 
to environmental temperature. Indeed, studies have 
reported seasonal movements of C. mydas between 
FGs in order to stay in warmer waters (Avens & 
Lohmann, 2004; López-Mendilaharsu et al., 2006). 
The literature corroborates a wider latitudinal 
distribution for NC/EPGL turtles (Álvarez-Varas 
et al., 2017; Dutton et al., 2019), suggesting lower 
thermal constraints than for SC/WPGL turtles. 
Moreover, NC/EPGL turtles usually have darker 
carapace coloration (referred to as the black 
morphotype), which may play an important role in 
increasing their body temperature (Bustard, 1970).

The hypothesis of movement segregation mediated 
by temperatures of ocean currents is concordant 
with the pattern of genetic structure observed in the 

ME

PE

GA

NZ

AR

EI

BS

CR

ME PE GA NZ AR EI BS CR

0.0
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* * * * * **
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Figure 5.  Genetic distance (pairwise FST) among Chelonia mydas foraging grounds in the Pacific Ocean calculated using 
mitochondrial DNA (control region) data and R graphs in Arlequin. A, foraging grounds within the south-central/western 
Pacific genetic lineage (SC/WPGL). B, foraging grounds within the north-central/eastern Pacific genetic lineage (NC/EPGL). 
NZ, New Zealand; EI, Easter Island (Chile); GA, Galapagos (Ecuador); CR, Costa Rica; ME, Mexico; PE, Peru; AR, Arica 
(Chile); BS, Bahia Salado (Chile). *Significant (P < 0.05).
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Pacific Ocean, raising new questions about the effect 
of certain key environmental variables on C. mydas 
movements between FGs. Although our findings should 
be tested by extending the sampling design to other 
size classes, FGs and rookeries, and be complemented 
with tools such as satellite tracking, mark-recapture, 
particle modelling and other molecular markers, this 
information provides evidence on the importance 
of studying genetic structuring patterns at a broad 
spatial scale in order to better comprehend the ecology 
of cosmopolitan species and for effective conservation 
planning.

Morphological variation and its association 
with genetic structure at different spatial 

scales

Our results on morphology show marked broad-scale 
differentiation between genetic lineages for all evaluated 
traits (except the flipper), suggesting a substantial 
neutral genetic effect on these traits (Holderegger et al., 
2006; Álvarez-Varas et al., 2019). Thus, it is probable 
that this morphological differentiation is associated 
with gene-flow barriers (e.g. Panama Isthmus and 
oceanographic barrier west of Hawaii) and the 
natal homing behaviour of this species, which would 
maintain these populations reproductively isolated. 
Other studies have also described a strong correlation 
between morphology and genetics in widely distributed 
marine species. For instance, Kage (1999) and Van 
Cise et al. (2019) found a marked association between 
morphology and mtDNA haplotypes in short-finned 
pilot whales in the Pacific Ocean, and Viaud-Martinez 
et al. (2008) demonstrated morphological, genetic and 
likely ecological divergence between Black Sea and 
Mediterranean Sea bottlenose dolphins.

All body traits (carapace, plastron, head and flipper) 
of SC/WPGL turtles vary between FGs. However, 
traits are not concordant with the genetic structuring 
pattern in this lineage (only New Zealand exhibited 
differentiation). On the contrary, NC/EPGL turtles 
show congruence between the morphological and 
genetic patterns (low differentiation between FGs, 
except for Mexico). These results are probably due to 
SC/WPGL reflecting an ancient lineage of C. mydas 
(Dutton et al., 2014a; Jensen et al., 2019) that has 
had considerably more time to differentiate than NC/
EPGL. Nevertheless, as there is no marked genetic 
structuring based on mtDNA in SC/WPGL, it is possible 
that the morphological variation observed is linked to 
selective pressures associated with different ecological/
environmental conditions operating in each FG. This 
lack of coincidence may also be attributed to the low 
statistical power of mtDNA at a fine scale (Teske et al., 
2018), which demands future research incorporating 
molecular markers with greater variability.S
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The hypothesis of natural selection occurring in 
FGs makes sense, especially for head shape and 
flipper shape, which are traits that are likely under 
strong selective pressure since they relate to diet 
specialization and dispersal capability, respectively 
(Wyneken et al., 1999; Nishizawa et al., 2010; Coelho 
et al., 2018). Carapace and plastron shape could be 
related to ecological or sexual selection (Andersson, 
1994; Godley et al., 2002; Bonnet et al., 2010; Salmon & 
Scholl, 2014; Casale et al., 2017). Genomic tools could 
allow us to examine the relationship between these 
phenotypic traits and natural selection, and to rule out 
the effect of phenotypic plasticity in this endangered 
species, for which it is difficult to obtain empirical 
fitness data and carry out experimental studies.

Integrating morphology and genetics: 
conservation and management implications

It has been demonstrated that FGs have a profound 
influence on C. mydas population dynamics, being key 
habitats in their life cycle (Solow et al., 2002; Seminoff 
et al., 2015). Morphological and genetic data confirm 
that some Pacific FGs aggregate individuals with 
different origins associated with distinct lineages, 
which is in accordance with previous reports (Amorocho 
et al., 2012; Naro Maciel et al., 2014; Godoy et al., 
2016; Chaves et al., 2017). In particular, Easter Island 
(eastern Polynesia), San José (northern Peru) and 
Matapalito (northern Costa Rica) were documented 

as new sites harbouring sympatric lineages, and the 
Reserva de la Biósfera El Vizcaíno (Baja California 
Sur, Mexico), Arica and Bahia Salado (northern Chile) 
as FGs hosting individuals from a single lineage.

Understanding the genetic diversity distribution, 
levels of connectivity between regions and populations, 
and the processes associated with population structure 
has important implications for species management 
and conservation (Avise, 2009; Jensen et al., 2019), 
especially for C. mydas, whose key habitats (FGs 
and rookeries) are usually separated by hundreds to 
thousands of kilometres (Seminoff et al., 2015). The 
high genetic diversity in FGs located at the periphery 
of the C. mydas distribution range (Mexico, Chile and 
New Zealand) emphasizes the importance of their 
investigation and protection; particularly in Chile, 
where anthropic threats are increasing and the 
population sizes are small or unknown (Álvarez-Varas 
et al., 2017).

Based on genetic connectivity and morphology 
patterns found here, focusing conservation and 
management efforts on two different levels is proposed: 
(1) genetic lineages and (2) management units (MUs) 
within genetic lineages.

	1.	 Genetic lineages: At a broad scale, the genetic and 
morphological divergence between NC/EPGL and SC/
WPGL C. mydas populations corroborates the need for 
separate management of these lineages in rookeries 
and FGs (where they are sympatric). Estimation of 
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population trends, genetic studies, ecological research 
and conservation efforts separately, as far as possible, 
is recommended. Specifically, the evaluation of the 
NC/EPGL as a separate subpopulation of C. mydas in 
the IUCN Red List. Regarding SC/WPGL and ATGL, 

further investigation increasing sampling area will 
provide more evidence to evaluate the segregation of 
these lineages into subpopulations.

	2.	 Management Units (MUs) within genetic lineages: 
MUs are local populations that are managed 
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as distinct units since they are genetically and 
demographically independent (Moritz, 1994). 
Management unit delimitation in marine turtles 
has been restricted to nesting rookeries, since they 
fit the concept of MU (Moritz, 1994; Labastida-
Estrada et  al., 2019). Nevertheless, the potential 
effects of natural selection on the morphology of 
this species suggests including information from 
FGs in MU delineation in order to maintain locally 
adapted gene pools and protect important ecological 
and evolutionary processes. For this reason, it is 
crucial to integrate data from rookeries and FGs. At 
this smaller scale, our data only allow us to propose 
groups of ecologically connected FGs (likely through 
animal movements). Future research linking these 
data with previously established MUs (defined 
using rookery data) will be fundamental to elaborate 
specific plans. Management unit delimitation using 
these data will reflect the connectivity between these 
types of habitats, being key for developing strategies 
at a regional level, such as the establishment of 
marine corridors or fishery measures that minimize 
bycatch rates, among others.

	 (a)	 Foraging grounds within NC/EPGL: Our  
results show genetic segregation between 
hemispheres and a lack of phenotypic 
differentiation between FGs probably 
associated with the age of this lineage. 
Therefore, based on these data, the Mexico 
FG (Northern Hemisphere) would correspond 
to a single group, while FGs from the 
Southern Hemisphere (New Zealand, Costa 
Rica, Galapagos, Peru and Chile, including 
Easter Island) would be a separate group of 
ecologically connected FGs.

	 (b)	 Foraging grounds within SC/WPGL: SC/WPGL 
exhibit well-differentiated morphological 
groups for all traits, but only New Zealand 
shows genetic differentiation. The genetic data 
may suggest New Zealand as a single group 
and Costa Rica, Galapagos, Peru and Easter 
Island as another. However, considering the 
lack of coincidence of phenotypic and genetic 
patterns, extensive genetic and morphological 
sampling in the south-central Pacific is needed 
to understand connectivity among FGs and 
elaborate efficient conservation strategies at a 
regional level.

Finally, by considering the potential influence of 
natural selection on the morphological variation in 
SC/WPGL turtles, research on genes under selection 
or gene expression, and their relationship to ecological 
or environmental conditions in FGs, would be useful 
to understand differences among populations and the 

selective pressures to which they are subject. All this 
integrated information will be crucial for long-term 
protection of the neutral and adaptive diversity and 
the evolutionary potential of the endangered C. mydas.

CONCLUSION

Our study suggests that factors such as vicariance, 
dispersal, life-history traits and environmental 
conditions operating in FGs shape the intraspecific 
morphology and distribution of the genetic diversity 
of C. mydas. Particularly, oceanographic features of 
main surface current systems in the Pacific Ocean 
may be influencing the population genetic structure 
of this species on a broad scale. Although neutral 
genetic markers are effective at predicting body shape 
variation in C. mydas, the lack of coincidence between 
genetic and phenotypic differentiation patterns in 
the FGs suggests adaptive divergence. Such patterns, 
together with the high genetic diversity and the 
presence of divergent haplotypes in the FGs, indicate 
the need to increase ecological research in these areas 
to solve key questions related to evolution, adaptation 
and phenotypic plasticity. Finally, based on the Pacific 
Ocean C. mydas genetic structure and morphological 
variation, management of each lineage separately in 
areas where they coexist, evaluation of NC/EPGL as 
a separate subpopulation in the IUCN Red List and 
integration of the FGs when defining conservation 
units in order to preserve the evolutionary potential 
of this species are recommended. By integrating 
morphological and genetic tools, this study proposes 
sea turtle conservation management based on the 
protection of neutral and adaptive diversity, leading 
to new challenges regarding conservation genetics on 
threatened cosmopolitan species.
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Table S1. Details of foraging grounds, capture methods, data collection and research permits used in this study, 
including references.
Table S2. Chelonia mydas control region haplotypes from the Pacific Ocean retrieved from GenBank used in this 
study (765 bp, 241 haplotypes). 
Table S3. Frequencies of Chelonia mydas control region haplotypes recovered from foraging grounds included in 
this study (765 bp, 35 haplotypes). UR, Uruguay; NZ, New Zealand; GA, Galapagos, Ecuador; PE, Peru; CR, Costa 
Rica; EI, Easter Island, Chile; BS, Bahia Salado, Chile; AR, Arica, Chile; ME, Mexico.
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