Deep Sea Mining: A brief summary of potential impacts on marine mammals

Simon Childerhouse PhD

Nelson, New Zealand

e. simon.childerhouse@cawthron.org.nz

CAWTHRON

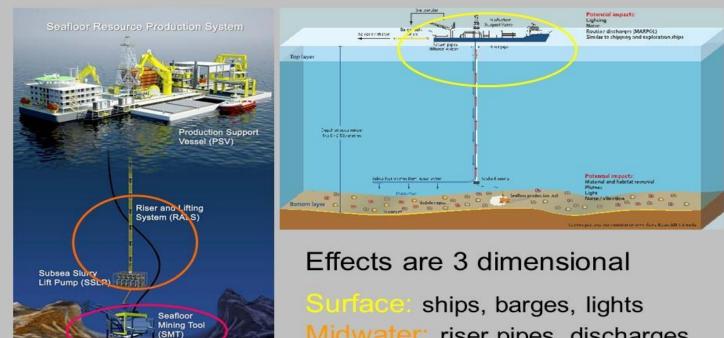
Dave Paton PhD

Canberra, Australia

e. dave.paton@blueplanetmarine.com

Deep Sea Mining

• Marine mammals: whales, dolphins, seals, dugongs


- It is a relatively new technology globally with considerable uncertainty regarding the potential for environmental impacts
- In most mining locations, the biological environments are often poorly understood by comparison to terrestrial environments
- There are currently no recognised international best practice guidelines for minimising or mitigating environmental impacts
- Regulators, therefore, may apply the precautionary approach in the absence of any empirical data
- Effects: Environmental, Ecological, Physiological, Underwater noise

Deep Sea Mining

Deep-sea mining impacts

Midwater: riser pipes, discharges Seafloor: mining tools, sediment

Potential effects on marine mammals

CAVEAT: Potential effects will vary considerably in their nature and extent across areas and species subject to a range of factors:

- Their usage of the area (e.g. breeding, feeding, migrating)
- Importance of the mining area (e.g. are marine mammals able to undertake those activities elsewhere or not?)
- Sensitivity (e.g. can they tolerate increased sedimentation, noise, or switch prey and/or areas)
- Threat status (e.g. endangered vs. non-threatened)
- The exact nature and extent of the operation and effect (e.g. sedimentation highly localised; operational noise only a little above ambient)

Potential Environmental Effects

Seafloor:

- Physical destruction
- Injury or capture of marine mammals in mining equipment
- Sediment smothering
- Toxic effects from sedimentation
- Loss and/or alteration of habitat
- Noise (i.e. from benthic operations such as pumps, sonar on crawler units)
- Light pollution

Potential Environmental Effects

Water column:

- Sediment plume can lead to ecological effects and reduced foraging success for visual predators
- Displacement and/or mortality of species (e.g. fish)
- Seabed toxins released and can accumulate in food webs
- Potential physiological and/or reproductive impacts
- Oxygen depletion
- Noise (i.e. from riser and discharge pipes)
- Entanglement risk (e.g. anchor lines, riser and discharge pipes & lines)

Potential Ecological Effects

- Covers a wide array of possible effects
- Generally due to:
 - Direct modification/destruction of sea floor habitat from actual mining activity
 - Sediment plume in water column
 - Deposition onto the sea floor
- Ecological effects
 - Displacement and/or mortality of marine mammal prey
 - May lead to changes in food webs and can be indirect
 - Indirect effects can alter parts of the web that flow onto marine mammal prey

Potential Ecological Effects

- In general, poorly understood and theoretical
- Few examples of a comprehensive evaluation of effects on food webs. Most assessments will rely on generalised ecological theory
- Few locations will have sufficient data to reliably estimate any potential effects
- Almost no examples of actual ecological effects from deep sea mining other than direct habitat destruction
 - Lack of baseline data and any monitoring of existing operations
- Risk varies considerably by operational configuration, composition and extent of sediment plume and local biodiversity

Potential Physiological Effects

- Seabed toxins can be released and may accumulate in food webs including biomagnifying in higher order predators such as marine mammals
- Potential effects can include increased mortality and/or • reduced reproductive performance
- Is a direct function of the elements in the discharge and the sensitivity of marine mammals in the area of the discharge/plume
- Concerns around release of elements such as radioactive \bullet compounds
- Very poorly understood in most instances •

Potential Noise Effects

Noise from mining operations is generated throughout the water column including from sources such as:

- Surface processing vessel, support vessels
- Water column riser and discharge pipes, pumps
- Sea floor mining units

Magnitude and nature of noise varies but it is primarily a function of the operational configuration

Major noise sources include:

- Pumps for moving material to and from the processing vessel
- Machinery associated with processing vessel and processing equipment
- Surface vessel traffic
- Mining units pumps, sonar, extraction tools

Potential Noise Effects

Marine mammals are generally very sensitive to underwater noise.

Sensitivity to noise varies significantly between species, sexes, behavioural state and even temporally

• Different frequencies will affect species differently

Potential effects may include:

- Displacement of prey and/or marine mammals
- Temporary or Permanent hearing threshold shifts
- Alteration of behaviour
- Effects on communication, navigation and prey finding

Knowledge gaps

- Understanding of the real impacts of deep sea mining
- Understanding of the effectiveness of any proposed mitigation strategies
- In most mining locations, the biological environments are often poorly understood by comparison to terrestrial environments
- Spatial and seasonal distribution and abundance of marine mammals - especially offshore in deep water environments
- Knowledge of locations that are important for core biological functions, such as marine mammal breeding, feeding and resting areas, and migration routes

Concluding remarks

- Potential impacts of deep sea mining on marine mammals include:
 - Environmental, ecological and physiological effects
 - effects of sound on behaviour (including communication, foraging, migration, reproduction and predator avoidance),
 - auditory factors that affect behaviour (including perception, sensitivity, and auditory masking),
 - the biological significance (population-level effects) of these changes including long-term cumulative effects
- Finally, while impacts on marine mammals are possible, the severity of impacts will be driven on a site by site basis and could vary from negligible to highly significant depending on the location

