
ASIAN DEVELOPMENT BANK

A GUIDEBOOK ON MAPPING
POVERTY THROUGH
DATA INTEGRATION AND
ARTIFICIAL INTELLIGENCE
APRIL 2021

ASIAN DEVELOPMENT BANK

A GUIDEBOOK ON MAPPING
POVERTY THROUGH
DATA INTEGRATION AND
ARTIFICIAL INTELLIGENCE
APRIL 2021

 Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO)

© 2021 Asian Development Bank
6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines
Tel +63 2 8632 4444; Fax +63 2 8636 2444
www.adb.org

Some rights reserved. Published in 2021.

ISBN 978-92-9262-785-0 (print); 978-92-9262-786-7 (electronic); 978-92-9262-787-4 (ebook)
Publication Stock No. SPR210131-2
DOI: http://dx.doi.org/10.22617/SPR210131-2

The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies
of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent.

ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any
consequence of their use. The mention of specific companies or products of manufacturers does not imply that they
are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned.

By making any designation of or reference to a particular territory or geographic area, or by using the term “country”
in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.

This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO)
https://creativecommons.org/licenses/by/3.0/igo/. By using the content of this publication, you agree to be bound
by the terms of this license. For attribution, translations, adaptations, and permissions, please read the provisions
and terms of use at https://www.adb.org/terms-use#openaccess.

This CC license does not apply to non-ADB copyright materials in this publication. If the material is attributed
to another source, please contact the copyright owner or publisher of that source for permission to reproduce it.
ADB cannot be held liable for any claims that arise as a result of your use of the material.

Please contact pubsmarketing@adb.org if you have questions or comments with respect to content, or if you wish
to obtain copyright permission for your intended use that does not fall within these terms, or for permission to use
the ADB logo.

Corrigenda to ADB publications may be found at http://www.adb.org/publications/corrigenda.

Note:
In this publication, “$” refers to United States dollars.

Cover design by Francis Manio.

CONTENTS

Table, Figures, and Box iv
Foreword v
Abbreviations vii

1 INTRODUCTION 1

2 HARDWARE AND SOFTWARE REQUIREMENTS AND SETUP 5
Software Requirement Setup 5
R and RStudio 5
Chrome Browser 9
Google Account 9
Google Earth Engine 9

3 DATA PREPARATION 11
Daytime Satellite Imagery Processing 11
Downloading the Shapefiles 11
Generating Centroids for Satellite Imagery 14
Downloading Satellite Imagery 26
Converting Format of Satellite Imagery 79
Nighttime Satellite Imagery Processing 88
Binning Luminosity Values and Splitting Dataset 124

4 TRAINING OF CONVOLUTIONAL NEURAL NETWORK 147

5 CONVOLUTIONAL NEURAL NETWORK MODEL FEATURE EXTRACTION 193

6 RIDGE REGRESSION 215

7 RESCALING OF POVERTY ESTIMATES AND VISUALIZATION 237

BIBLIOGRAPHY 263

| iii

TABLE, FIGURES, AND BOX

TABLE

 Description of Required R Packages 7

FIGURES

1 Road Map of Methodology for Predicting Poverty Using Satellite Imagery 2
2 Machine Learning and Published Poverty Rate Maps of the Philippines, 2015 261
3 Machine Learning and Published Poverty Rate Maps of Thailand, 2015 261

BOX

 Steps in Adjusting Weights of Cross Entropy Loss Function 179

iv |

_Toc65576180
_Toc65576181

FOREWORD

Since the Sustainable Development Goals (SDGs) were launched in 2015, both traditional and innovative
types of data have become imperative in understanding the progress that has been made in achieving

those goals. By providing more timely, granular, and comprehensive information, innovative sources
complement traditional ones that are often constrained by high data collection costs. Conventional
household or enterprise surveys, for instance, constitute a major data source for SDGs, but these often
have sample sizes too small to provide enough granularity for highly targeted analyses. High costs also
mean that these surveys are conducted too infrequently for timely measurement of indicators. On the
other hand, conventional surveys and censuses serve as quality benchmarks for representativeness of
data and adherence to statistical principles and standards that enable reliable inferences.

Indeed, to obtain timely, granular, and credible data entails integrating traditional with innovative data
sources. Poverty statistics is an area where there have been several initiatives to blend multiple types of data.
One noteworthy initiative involves using satellite imagery to provide more geographically disaggregated
data than those published by government agencies. This approach leverages state-of-the-art computer
imaging techniques to predict specific development indicators based on features on the ground.

The Asian Development Bank (ADB) designed a knowledge and support technical assistance called Data
for Development in 2017 that aims to strengthen the capacity of national statistics offices to meet the
increasing data demands for policymaking and monitoring of development goals and targets. One of its
components focuses on subnational disaggregation of SDG indicators, particularly poverty statistics, that
draws from recent studies combining geospatial data, satellite imagery, and powerful machine learning
algorithms with traditional data sources and conventional methods to estimate the magnitude of poverty
in specific locations. Such data are critical in aiding government and development agencies to distribute
social assistance more efficiently. In the study, statisticians from ADB’s Statistics and Data Innovation
Unit within the Economic Research and Regional Cooperation Department worked with the Philippine
Statistics Authority, National Statistical Office of Thailand, and World Data Lab to examine the feasibility
of poverty mapping using satellite imagery and geospatial data.

This guidebook documents the study’s key approaches step-by-step. It serves as a valuable reference for
national statistics offices on how to use easily accessible resources such as satellite imagery to enhance
the compilation of poverty statistics. The Key Indicators for Asia and the Pacific Special Supplement 2020
is recommended reading for users of this guidebook. The publication team was led by Arturo Martinez Jr.
and Ron Lester Durante, under the overall direction of Elaine Tan. It was written by Ron Lester Durante,
Arturo Martinez Jr., Mildred Addawe, Marymell Martillan, Joseph Bulan, Tomas Sako, and Martin Hofer,
with valuable research and technical support from Katharina Fenz and Thomas Mitterling. Iva Lohovska
from World Data Lab also provided insightful feedback on improving the guidebook, while Ma. Roselia
Babalo, Rose Anne Dumayas, Raymond Adofina, and Ephraim Cuya provided operational support
through its preparation. The cover of this publication was designed by Francis Manio. Manuscript editing

| v

vi |

was performed by Raynal Squires, while the publication’s layout, page design, and typesetting were carried
out by Judy Yñiguez.

We hope this guidebook will serve as a useful reference for national statistics offices across Asia and the
Pacific in mapping the spatial distribution of poverty using a combination of traditional and innovative
data sources.

Yasuyuki Sawada
Chief Economist and Director General
Economic Research and Regional Cooperation Department
Asian Development Bank

Foreword

ABBREVIATIONS

CNN convolutional neural network

Colab Google Colaboratory

CRS Coordinate Reference System

CSV comma-separated values

DMSP-OLS Defense Meteorological Program Operational Line-Scan System

GADM Database of Global Administrative Areas

GB gigabyte

GCS Geographic Coordinate System

GDAL Geospatial Data Abstraction Library

GEE Google Earth Engine

GMM Gaussian Mixture Model

GPU graphics processing unit

GUI graphical user interface

HDX Humanitarian Data Exchange

JSON java script object notation

NOAA National Oceanic and Atmospheric Administration

NTL nighttime lights

PCS Projected Coordinate System

VIIRS Visible Infrared Imaging Radiometer Suite

| vii

 INTRODUCTION

Properly compiled data in poverty statistics provides visibility for socioeconomically disadvantaged
people in society. It sheds light on their demographic profiles, their magnitude, location, and their

needs, all of which are critical inputs for the design of interventions in a development agenda.

In developing countries, poverty statistics are typically derived from household surveys designed to provide
reliable estimates at national, regional, provincial, or other highly aggregated levels. However, as better
disaggregated data can facilitate more effective targeting of socioeconomic programs, it is important to
explore alternative data sources that can complement these surveys.

Satellite imagery is a potentially useful source of alternative data which may be used to enhance the
granularity of poverty statistics compiled from household surveys. The emergence of satellite data has
invigorated efforts to measure poverty on a gridded level from space. A novel approach entails using
artificial intelligence to predict the prevalence of poverty (or other indicators) based on satellite image
features.1 Since data from images are naturally unstructured, noisy, and difficult to process statistically,
one can design computer vision techniques to extract patterns that may be used to associate them
with poverty.

Mapping Poverty through Data Integration and Artificial Intelligence: A Special Supplement of the Key
Indicators for Asia and the Pacific, a report published by the Asian Development Bank (ADB), documents
the results of using computer vision techniques to map the spatial distribution of poverty in the Philippines
and Thailand.2 The country-specific reports, Mapping the Spatial Distribution of Poverty Using Satellite
Imagery in the Philippines and in Thailand, provide more detailed discussion on the methodology.3 The
first step of the methodology entails training a convolutional neural network (CNN)—an advanced type of
machine learning algorithm commonly used for image classification-related tasks—to predict nighttime
light data using daytime images as input. Intensity of lights at night is a good proxy for wealth and human
interaction on the ground and this kind of abundant, granular information meets the high-volume data
requirement for training machine learning algorithms. In the process of learning to “predict” nighttime
light intensity, the CNN learns to detect general features in images, or latent variables, related to light
intensity that can be used for other tasks, like estimating poverty measures. To maintain consistency with
published official statistics, the condensed, image-based information can be averaged on a coarser level
to align with the level of information available in government-published poverty estimates. To speed up
learning and reduce the amount of data needed for the process, a CNN that has already been trained on
some image databases is used to assign labels to larger databases of images.

1 N. Jean et al. 2016. Combining Satellite Imagery and Machine Learning to Predict Poverty. Science. 353 (6301). pp 790–794.
2 Asian Development Bank (ADB). 2020. Mapping Poverty through Data Integration and Artificial Intelligence: A Special Supplement

of the Key Indicators for Asia and the Pacific. Manila.
3 ADB. 2021. Mapping the Spatial Distribution of Poverty Using Satellite Imagery in the Philippines. Manila; and ADB. Forthcoming.

Mapping the Spatial Distribution of Poverty Using Satellite Imagery in Thailand. Manila.

1

| 1

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence2 |

In the second step, prediction of nighttime light intensity is discarded and the trained CNN alone is
used to summarize the complex multidimensional input of image data into a single vector. This vector
has hundreds of features, each assigned a single value in every image. These features are a representation
of what the network detects in an image. They have several advantages over raw pixel values, most notably
that convolutional layers scan over the image using kernels so that it does not matter where features are
placed on the image.

To combine grid-based image features with survey-based poverty data, the value of each feature within
the given survey areas is averaged. The final training step uses a ridge regression to find the relationship
between the image features and survey-based poverty statistics. The trained CNN and ridge parameters
can then be used to predict poverty using only a daytime image as input. The process is illustrated in Figure 1.

Figure 1: Road Map of Methodology for Predicting Poverty Using Satellite Imagery

Notes: The procedure requires three types of data: geographically disaggregated poverty statistics, daytime satellite imagery, and images
of earth at night. After pre-processing and cleaning these data (Step 1), Step 2 trains an algorithm to classify (daytime) satellite images
into different classes of night light intensity. Step 3 extracts the image features from the last layer of the trained algorithm. In Step 4, the
image features are averaged so the space enclosed in grids corresponds to the level at which poverty-labeled images are available. These
are regressed using the target variable of the survey to find the relationship between features and the target variable. Step 5 summarizes
the full pipeline from input image to target variable.
Source: Graphics generated by the study team.

Introduction | 3

This guidebook outlines the step-by-step procedure summarized in Figure 1. The guidebook is intended
as a one-stop reference for researchers and other development practitioners (particularly from national
statistics offices) who wish to apply these methods for exploratory studies using tools that are readily
accessible and without significant cost. Because we strongly believe in the straightforward methods and
tools described here, other (sometimes proprietary) tools that may be more effective in conducting larger-
scale poverty mapping initiatives are not discussed.

Users of this guidebook are encouraged to first read the ADB report (footnote 2), particularly the section
describing the methodology, before going through the step-by-step procedure outlined here. Users are
also advised to check for updates to the software and services referred to and pictured in screenshots
in this guidebook. The discussions in this guidebook are meant for educational purposes. It should be
noted that trademarks of tools and resources used are owned solely by the respective developers, and this
guidebook is not endorsed by or affiliated with these companies in any way.

 HARDWARE AND SOFTWARE
 REQUIREMENTS AND SETUP

Software Requirement Setup

R and RStudio
For step-by-step procedure in downloading and installing R and Rstudio, refer to this page:
https://rstudio-education.github.io/hopr/starting.html.

Installing Rtools

Rtools is used to build R and R packages because some of the packages are downloaded as source code
and need to be compiled.

For information on how to install and test Rtools, refer to this page:
https://cran.r-project.org/bin/windows/Rtools/.

2

Hardware

 Minimum system requirements: 1.6 gigahertz 4-core processor or better,
8 gigabytes (GB) RAM, 10 GB of free hard disk space with reliable internet
connection

Software

 R version 4 or higher

 RStudio version 1.4 or higher

 R Packages: caret, fasterize, gdalUtilities, mclust, raster, rasterVis, sf, tidyverse

 Google Chrome browser version 79.0.3945 or higher

 Fastai Python library version 1.0.61

 Gmail account, Google Drive with at least 5 GB free space, and Google Earth
Engine account

| 5

https://rstudio-education.github.io/hopr/starting.html
https://cran.r-project.org/bin/windows/Rtools/

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence6 |

Installing R packages

The required packages are caret, fasterize, gdalUtilities, mclust, raster, rasterVis, sf, and tidyverse. Table 1
provides a description of these packages.

To install these packages, type the following commands in the Source Panel:

install.packages(c(“caret”,
 “fasterize”,
 “gdalUtilities”,
 “mclust”,
 “raster”,
 “rasterVis”,
 “sf”,
 “tidyverse”),
 dependencies = T)

Then click the icon to execute the entire script.

Hardware and Software Requirements and Setup | 7

Table 1: Description of Required R Packages

Package Name Description

caret Short for Classification And REgression Training. It contains functions for creating
predictive modeling. It also includes tools for data splitting, pre-processing, feature
selection, model tuning using resampling, and variable importance estimation.

fasterize A faster alternative to rasterize( ) function of the package raster. However, it is currently
limited to rasterizing polygons of sf-type objects.

gdalUtilities It utilizes the self-contained Geospatial Data Abstraction Library (GDAL) utilities of
the package sf. It provides a wrapper that mirrors the GDAL command line interface.
(Wrapper is a function that calls another function/library that performs the actual
operation but provides a different interface.)

mclust A model-based clustering, classification and density estimation that uses finite normal
mixture modeling.

raster A package for reading, writing, manipulating, analyzing, and modeling spatial data.

rasterVis A package complement to the raster package for visualization and interaction. It provides
visualization methods for quantitative and qualitative data, for both univariate and
multivariate rasters.

sf A package support for simple features, which is a standardized way of spatial vector data
encoding. It also has GDAL bindings for reading and writing data, GEOS bindings for
geometrical operations, and PROJ bindings for projection conversions and datum
transformations.

tidyverse A collection of the following R packages used for data analyses:
ggplot2 – used for data visualization;
dplyr – used for data manipulation;
tidyr – used to create a tidy data where a column is variable, a row is an observation

and a cell is a single value;
readr – provides a way to read delimited text data;
purr – provides tools for working with functions and vectors;
tibble – a tweaked data.frame( ) function used for large datasets;
stringr – provides functions for working with strings like searching, matching,

concatenating, replacing, etc.; and
forcats – provides tools to handle factors or categorical variables.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence8 |

Some of the packages and/or their dependencies need to be installed from source through the help of
Rtools. A dialog box will ask permission to install packages from source.

Click Yes to start package download and installation.

The Console Panel will revert to prompt once all packages are installed. Review the Console Panel outputs
to check for errors in package installations.

Hardware and Software Requirements and Setup | 9

Chrome Browser
Install Google Chrome Web Browser version 79.0.3945 or higher.

For step-by-step procedure in downloading and installing Google Chrome, refer to this page:
https://support.google.com/chrome/answer/95346.

Google Account
Setting up a new Google account.

For step-by-step procedure in creating a Google account refer to this page: https://support.google.com/
accounts/answer/27441?hl=en#.

If you prefer to use an already existing Google account, verify that its associated Google Drive has at least
5 GB of free storage space.

Google Earth Engine
Google Earth Engine (GEE) is a cloud-based geospatial processing tool with built-in spatial datasets
that goes back more than 4 decades. A sign-up is required using an active Google account to use the
GEE service.

Refer to this page to sign up and get access for Google Earth Engine: https://signup.earthengine.google.com/.

https://support.google.com/chrome/answer/95346
https://support.google.com/accounts/answer/27441%3Fhl%3Den%23
https://support.google.com/accounts/answer/27441%3Fhl%3Den%23
https://signup.earthengine.google.com/

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence10 |

Below is the Google Earth Engine Code Editor.

Script manager
 API documentation
 Asset manager

Get a link (URL) to the script
 Save script
 Run script

Search bar for datasets or places
Inspect locations, pixel values
and objects on the map
 Console output
 Task manager

Geometry tools

MAP

 DATA PREPARATION

Daytime Satellite Imagery Processing

Data Requirements

 Country shapefiles

Tools

 Google Colaboratory

 R and RStudio

Downloading the Shapefiles
A shapefile is a simple vector data storage format for storing the location, shape, and attributes of
geographic features. The geographic features in a shapefile can be represented by points, lines, or polygons.4
Shapefiles determine the extent of satellite imagery to download. The administrative boundaries of the
shapefiles should be consistent with official statistical data.

Shapefiles can be downloaded from various sources, but the most common are the Humanitarian
Data Exchange (HDX) (www.humdata.org) and Database of Global Administrative Areas (GADM)
(www.gadm.org).

HDX is an open platform for sharing data across crises and organizations. Launched in July 2014 by the
United Nations Office for the Coordination of Humanitarian Affairs, HDX aims to make humanitarian
data easy to find and use for analysis. HDX shapefiles are derived from original datasets sourced from
relevant government agencies (e.g., national statistics offices, mapping agencies) and attached with
standard geographic codes. These shapefiles have been vetted, configured, and provided with live services
by the Information Technology Outreach Services of the Carl Vinson Institute of Government - University
of Georgia. These shapefiles are also updated every year.

GADM is a high-resolution database of country administrative areas that provides maps and spatial data
for all countries and their subdivisions. The current version is 3.6, which delimits 386,735 administrative

4 Environmental Systems Research Institute (ESRI). 1998. ESRI Shapefile Technical Description: An ESRI White Paper – July
1998. https://www.esri.com/Library/Whitepapers/Pdfs/Shapefile.pdf.

3

http://www.humdata.org
http://www.gadm.org
https://www.esri.com/Library/Whitepapers/Pdfs/Shapefile.pdf

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence12 |

areas with high spatial resolution and an extensive set of attributes. One limitation of using GADM is that
the administrative subdivisions could possibly differ on a country basis.

For the following steps, Thailand files are used for illustration.

STEP 1

In the browser address bar, type the HDX web address, www.humdata.org, and press Enter.

From the top bar, click Search Datasets. Type <country_name> administrative boundary.

For this illustration, type Thailand administrative boundary and press Enter.

STEP 2

Click the link to the country’s administrative boundary shapefile. Click Thailand administrative levels
0-3 boundaries.

http://www.humdata.org

Data Preparation | 13

STEP 3

Browse and select the country-level shapefile and the administrative boundary shapefile coinciding with
the published poverty estimates.

For this illustration, select tha_adm_rtsd_itos_20190221_SHP_PART_2.zip. Then click Download.

The shapefile is compressed in a ZIP file and automatically saved in the default download folder.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence14 |

STEP 4

Open the Downloads folder. Extract the shapefile from the ZIP file. Check the information note attached
to the ZIP file as different countries may have different notations.

In the case of Thailand, the following notations are used:

 adm0 – Country level
 adm1 – Provincial level
 adm2 – District level
 adm3 – Sub-district level (tambon)

Generating Centroids for Satellite Imagery
For this illustration, municipal boundary shapefiles are used to generate grids from raster pixels. Then
centroids are obtained for each grid. Outputs are saved as comma-separated values (CSV) file.

Grid centroids will be used to determine the center of the daytime satellite imagery tile to be downloaded.
Each tile will serve as input image for training the CNN model.

STEP 1

Open RStudio.

STEP 2

Click the Open File icon in the toolbar.

Search the R code: grid_cell_selection.R and click Open.

Data Preparation | 15

The administrative boundary shapefiles that correspond to the geographical level of the published poverty
data will be used to generate grids from raster pixels. Obtain the centroids of each grid. Then generate the
output as CSV file.

STEP 3

Load the R packages by typing library(package). On the R console window, type the following commands
and press Enter.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence16 |

 sf is for interpreting and operations on vector shapefiles
 raster is for raster object operations
 fasterize is for rasterizing vectors
 tidyverse is for data manipulation

STEP 4

Select the working directory (i.e., the active computer folder) using the function tk_choose.dir() from
the package tcltk (tcltk is a built-in package that provides the GUI for R; this command opens a window
for selecting the target folder).

Set the working directory by typing setwd().

STEP 5

Set the code pertaining to the country of study by typing country = “code”.

STEP 6

Calculate the grid size.

Grid size is the product of the satellite resolution (i.e., satellite granularity in meters/pixel) and the CNN
input image size (i.e., set.grid.resolution.px in pixels).

Most of the CNN architecture is trained on ImageNet (http://www.image-net.org/), which is a database of
human labeled images, like ResNet, which uses 256x256 pixel resolution. Though most have image input
size of 224x224 pixels, these architectures can also benefit from higher resolution images such as 512x512
pixels, 1024x1024 pixels or higher. However, this increase in resolution also increases the file size of each
image, constraining the graphics processing unit’s (GPU) memory where it will be stored and processed
during the CNN training process. The higher the resolution, the longer the training period since you may
need to train the model in smaller batches of images.

Satellite granularity was based on Landsat’s 5 resolution of 15 meters/pixel after pansharpening.

5 Landsat is the longest running program for acquisition of satellite imagery of Earth.

http://www.image-net.org/

Data Preparation | 17

The grid size is equal to 3840 meters.

Landsat is used as reference for grid computation because it has lower resolution (i.e., larger pixel size),
hence, more coverage and image detail. For the higher resolution Sentinel 2 satellite, more pixels can be
derived for the same grid size.

STEP 7

Select the file path of the administrative boundary shapefile that is consistent with the granularity of the
government-published estimates. Use the function tk_choose.files() to refer to GUI-based file selection.

Next, load the shapefile using sf function’s read_sf().

STEP 8

Create a new column containing the numeric portion of the administrative boundaries’ geographic code.
The shapefile’s PCODE usually contains a country code prefix. Thus, use a stringr package’s str_extact()
function to get only the numeric portion of ADM3_PCODE entries.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence18 |

STEP 9

The Coordinate Reference System (CRS) is a system used to define the position on the earth’s surface.
It allows merging of spatial datasets accurately and facilitates calculation of distance and surface area
properly. There are two types of CRS: the Geographic Coordinate System (GCS) and the Projected
Coordinate System (PCS). GCS covers the entire globe, while PCS is localized to lessen visual distortion
in a specific region. GCS is based on sphere coordinates and utilizes angular units (e.g., degrees, minutes,
seconds), while PCS is plane-based and uses linear units (e.g., meter, feet). World Geodetic System 1984
(WGS84) is an example of GCS. Universal Transverse Mercator (UTM) is an example of PCS.

Define the CRS variables in Proj.4 format. There are several websites that host Proj.4 CRS of different
projections, two of which are https://spatialreference.org/ and https://epsg.io/. Use the CRS to transform
the shapefiles from GCS into PCS. Make sure to check the appropriate PCS for the country of study.

Type the following commands and press Enter.

STEP 10

Check the projection information of the shapefile to verify its CRS.

https://spatialreference.org/
https://epsg.io/

Data Preparation | 19

STEP 11

Transform the shapefile from GCS to PCS. Use sf package’s st_transform( ) to change the shapefile’s CRS.

Then verify if transformation is successful using this command.

Get the extents of the PCS and GCS shapefiles. This is needed to calculate the conversion factor (meter_
reciprocal_PCS2GCS) from meters to degrees. Compute the conversion factor by getting the lagged
differences of xmin and xmax and ymin and ymax for both PCS and GCS. Then compute the ratio of x’s
and y’s of PCS and GCS, add the ratios, and get the average.

STEP 12

Create the grid in three steps:

First, generate an empty raster using raster() function through information from GCS extent, degrees-
converted-gridsize as the resolution (pixel size) and define the CRS of the blank raster;

Second, rasterize the shapefile’s geocode column. This creates a raster of all the shapefiles’ features with
the geocodes as raster values.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence20 |

STEP 13

To get the coordinates of each centroid, convert the raster into dataframe using the function as.data.
frame( ) with the option xy=T to generate the raster values (geocodes) and its corresponding centroid
coordinates.

STEP 14

Use the head( ) command to check the dataframe generated and to learn its structure. The x and y
columns are the centroid coordinates. The layer column is the rasterized shapefile attribute (geocode).

STEP 15

Create a new dataframe. Use dplyr’s functions and pipe operator (%>%) to perform a series of data
manipulations.

First, use filter( ) function to remove all “NA” values in the layer column to get only the centroids inside
the country borders.

Data Preparation | 21

Second, create a new column containing the grid ID.

Third, rearrange the column starting with ID, x, y, and layer. Rename “x”, “y” and “layer” as “lon”, “lat”, and
“geocode”, respectively.

STEP 16

Generate the filename for the CSV file output. Indicate the following identifiers:

 country – refers to country code;
 “centroid” – refers to data content; and
 gridsize and “grid”– refer to the grid size.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence22 |

STEP 17

Save the centroids dataframe as CSV file. Note that the output path will serve as the working directory.

The resulting CSV file should contain the grid ID, centroid coordinates (lon, lat), and the geocode.

Data Preparation | 23

STEP 18

In the browser address bar, go to Google Drive6 www.drive.google.com. Click and then click
File upload.

6 Google Drive is a trademark of Google LLC.

http://www.drive.google.com

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence24 |

After the file is uploaded, locate the CSV file containing the centroid coordinates.

This file is needed for downloading the satellite imagery of each grid.

Data Preparation | 25

Repeat the steps using the country level shapefile. This time, upload the folder containing the country
shapefile.

This folder is needed for determining the country boundary.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence26 |

Downloading Satellite Imagery
STEP 1

In the browser address bar, input the Google Colaboratory (or Colab)7 web address https://colab.research.
google.com/ and press Enter.

Make sure to log in to your Google account. Then click Upload.

7 Google Colab is a trademark of Google LLC.

https://colab.research.google.com/
https://colab.research.google.com/

Data Preparation | 27

STEP 2

Click Choose File.

Locate the Jupyter Notebook file from the computer.

Use Daytime_imagery_batch_download.ipynb. Click Open.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence28 |

STEP 3

Click Connect.

This will initialize the Colab’s environment.

Data Preparation | 29

The Jupyter Notebook has two parts:

 Text cell is the non-executable part containing code descriptions or headers.

 Code cell contains the Python commands and it is denoted by square brackets “[]”.

Text cells

Code cells

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence30 |

To execute, click on each code cell and click button at the beginning of each code cell.

The first code cell sets up and mounts the Google Drive. Click on the link.

STEP 4

In the browser, sign in to your Google account.

Data Preparation | 31

Click Allow.

Click the Copy icon to copy the code.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence32 |

Return to the Colab browser tab. Paste the code in the text box. Then press Enter.

A status will show the path where Google Drive is mounted.

STEP 5

Ensure that any edits made in the libraries are automatically reloaded and any charts or images displayed
are shown in the notebook.

STEP 6

Setup the Google Earth Engine (GEE).8

8 Google Earth Engine is a trademark of Google LLC.

Data Preparation | 33

Install GEE Python library to the Colab virtual machine.

Initialize the authentication of the GEE account by clicking on the link.

STEP 7

In the browser, sign in to your Google account.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence34 |

Click Allow.

Click the Copy icon to copy the code.

Data Preparation | 35

Return to the Colab browser tab. Paste the code in the text box. Then press Enter.

A status will show that the authorization token has been successfully saved.

STEP 8

Load the GEE library into the Python environment and initialize it.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence36 |

STEP 9

Read the CSV file that contains the grid centroids.

Load the Python Data Analysis Library (Pandas) package that is used for reading external table files and
manipulating data. Fetch the link of the CSV file that was previously uploaded to the Google drive and
store it in the centroid_csv_path variable.

STEP 10

Click the Files icon to show the Files section.

Data Preparation | 37

STEP 11

Click gdrive from the list of folders and expand the file directory tree to find the CSV file location.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence38 |

STEP 12

Click the vertical ellipsis to show more file options.

Data Preparation | 39

STEP 13

Click Copy path.

STEP 14

Paste the link on the blank space after the variable centroid_csv_path and enclose it in apostrophes.

Then press to execute the code cell.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence40 |

STEP 15

Execute the code cell to set the id column as the dataframe’s row index and check the contents of the first
five rows of the CSV file.

STEP 16

Determine the dataframe’s row count using the count() function, which should be equal to the number of
satellite imagery to be downloaded. The output is saved in the variable imagery_count.

Data Preparation | 41

STEP 17

Install the GeoPandas Python library in the Colab virtual machine. GeoPandas is an open source project
that enables working with geospatial data in Python easier.

Load the GeoPandas library into the Python environment and then load the shapefile as adm0_shp
variable. Display the first five rows of the shapefile’s attribute table. To load the shapefile, fetch the link of
the country level shapefile that was previously uploaded to Google Drive.

STEP 18

Click Files icon to show the Files section.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence42 |

STEP 19

Click gdrive from the list of folders and expand the file directory tree to find the folder containing the
country level shapefile.

STEP 20

From the folder, select the country level shapefile (ADM0).

Data Preparation | 43

STEP 21

Click the vertical ellipsis to show more file options.

STEP 22

Click Copy path.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence44 |

STEP 23

Paste the link on the blank space after the variable adm0_shp and enclose it in apostrophes.

STEP 24

Execute the code cell. The output shows the contents of the shapefile’s attribute table. Only one row of
features is displayed because it is a country level shapefile.

STEP 25

Generate the bounding box polygon. This code will limit the imagery download from GEE to the country
boundaries.

Data Preparation | 45

First, create a bounding box polygon using the GeoPandas function envelope.

Second, convert bbox_poly to java script object notation (JSON).

STEP 26

Extract bounding box coordinates from the JSON object.

First, convert the JSON object to a dictionary object.

Second, create a subset of the first feature containing the coordinates. There is only one feature because it
is a country level shapefile.

Third, create a subset of the dictionary to get only the coordinate values of the bounding box.

STEP 27

Convert the bounding box coordinate into a GEE polygon object.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence46 |

STEP 28

View the composite imagery to check if the temporal filter used will generate a complete imagery,
specifically for Sentinel-2 satellite imagery, covering the entire country.

Input the code pertaining to the country of study by typing country = “code”. Then set the year of interest.

Use an if-else statement to select which satellite imagery to use based on the year of interest and to define
the image resolution and image size of the corresponding satellite. Based on the satellite information,
generate the folder name where the imagery will be stored in the Google Drive. Then generate the filename
using the same information.

Data Preparation | 47

Print out the values of the variables to check if the outputs are correct.

STEP 29

Specify the starting date of the coverage of satellite imagery.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence48 |

Then specify the end date. The end date of the temporal imagery filter needs to be adjusted to have a
longer temporal coverage in case it fails to generate a complete imagery for the entire country.

STEP 30

Through the GEE Application Programming Interface (API), filter the satellite imagery collection based
on the temporal range (i.e., start_date and end_date) and country boundary (i.e., bounding_box).
Visualize the imagery to check if the temporal filter yields complete imagery for the entire country.

Data Preparation | 49

STEP 31

First, import the Folium library in the Python environment. Folium is a Python visualization library for
geospatial data.

STEP 32

Using an if-else statement, select the appropriate filter for the satellite to be used. The satellite is selected
based on the availability of coverage of the imagery. Landsat 7 covers the period January 1999 to present and
Landsat 8 covers April 2013 to present, while Sentinel-2 imagery covers the period June 2015 to present.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence50 |

Filter the imagery collection in GEE. If the basis is the reference year of the study, then employ Sentinel-2.
Define the function maskS2clouds( ). Using the Sentinel-2 QA60 band, create a cloud mask to filter over
the imagery within the temporal range.

STEP 33

rgbVis defines the visualization parameters to be used in the filter.

 Min and max indicate the values to map red, green, and blue (RGB) 8-bit value to 0 and 255,
respectively.

 Bands indicate the satellite bands to visualize.
• B4 – refers to red band.
• B3 – refers to green band.
• B2 – refers to blue band.

Data Preparation | 51

STEP 34

Apply filter to the ImageCollection (i.e., Sentinel 2, or COPERNICUS/S2 as used in this illustration).

 filterDate() defines the temporal coverage.
 filterBounds() uses the bounding box to limit the filter to the country boundaries.
 filter(ee.Filter.lt(‘CLOUDY_PIXEL_PERCENTAGE’, 60)) provides the filter to exclude

images with more than 60% cloud cover.
 map(maskS2clouds) uses the function for creating cloud mask.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence52 |

STEP 35

Generate another object containing the median value of the filtered image collection and apply the
visualization parameter.

Data Preparation | 53

STEP 36

For Landsat satellite imagery, use Landsat 7 for available imagery prior to 2013 and Landsat 8 for available
imagery in 2013 and beyond. Assign the Landsat imagery collection to the variable landsat_mission.

LANDSAT/LE07/C01/T1 pertains to Landsat 7 imagery collection in GEE and LANDSAT/LC08/C01/T1
pertains to that of Landsat 8.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence54 |

STEP 37

Apply filter to the selected Landsat ImageCollection.

 filterDate() defines the temporal coverage.
 filterBounds() uses the bounding box to limit the filter to the country boundaries.

Data Preparation | 55

STEP 38

Generate a composite image for the entire country using the filtered ImageCollection. This command
builds the composite from imagery with less cloud cover.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence56 |

STEP 39

Pansharpen the Landsat imagery. This is an intermediate data preparation step undertaken to enhance
the resolution of the images. Pansharpening combines high resolution panchromatic images (black and
white but sensitive to colors) with lower resolution multispectral band images.

First, select the red, green, and blue (RGB) bands from the composite imagery generated. For Landsat 7,
RGB bands are designated as B3, B2 and B1, while Landsat 8’s RGB bands are designated as B4, B3 and B2.

Data Preparation | 57

Select the panchromatic band.

Convert the RGB image to Hue Saturation Value (HSV) and select only the hue and saturation bands.

Combine the hue, saturation and the panchromatic bands. Then convert it back into RGB to get the
upscaled image.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence58 |

STEP 40

Determine the x and y coordinates of the bounding box polygon’s centroid.

STEP 41

Create a Folium map object. Use the centroid coordinates of the bounding box to indicate the location to
display.

 zoom_start defines the initial zoom level of the map.
 width and height define the size of the map in pixel units.
 attr is the map tile attribution (optional) set to display the name of the satellite used as imagery

source.

Data Preparation | 59

STEP 42

Get the mapID of the filtered satellite imagery.

STEP 43

Generate a new map layer to visualize the following parameters:

 tiles is the map data source. It uses the mapID to get the URL link of filtered satellite imagery
from GEE.

 attr is the map tile attribution required if the URL link from Earth Engine is used.
 name is the layer name appearing in LayerControl.
 overlay is set to True to indicate that the imagery will be placed over the Folium default base map.
 control is set to True so that the layer will be included in the LayerControl.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence60 |

STEP 44

Overlay the bounding box polygon.

STEP 45

Define the map title for Sentinel and Landsat imagery. Insert a reminder to check if the satellite imagery
generated is complete.

Data Preparation | 61

STEP 46

Add the LayerControl to the map object. Then instruct Python to display the map.

Below is the output of the map visualization code cell.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence62 |

STEP 47

As the GEE is limited to only 3000 tasks, it is important to determine the number of tasks in queue to
prevent errors.

Use the function get_queued_tasks( ) to identify the number of “Ready” and “Running” tasks from the
GEE task list. This function is necessary to verify if there are fewer than 3000 tasks in queue.

STEP 48

Implement the function get_queued_task_filenames( ) to obtain the filenames of the “Ready” and
“Running” tasks on the GEE task list. This function is necessary to avoid file duplication.

Data Preparation | 63

STEP 49

Define the function for downloading the satellite imagery.

First, import the operating system (os) library to enable Python to execute operating system commands.
In this case, access the folders of the Colab virtual machine.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence64 |

Define the function download_satellite_imagery, which requires a satellite imagery object (sat_imagery)
as input.

next_batch_size refers to the number of new imagery downloading tasks to be pooled.

target_count refers to the number of tasks in the task list to trigger pooling of new batch of tasks.

Execute the function get_queued_task( ) to determine the number of “Ready” and “Running” tasks in
the GEE task list, if any. Then store it in the task_count variable. Get the list of “Ready” and “Running”
tasks’ filenames, if any, by calling the function get_queued_task( ) and store it in queued_filenames
variable. Lastly, print out the number of active tasks.

Data Preparation | 65

STEP 50

Loop through the list of grid centroids and download the images. The for-loop range is the number of
centroids in the CSV file.

Declare the imagery filename (imagery_file) to be used and its complete file path (imagery_filepath).

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence66 |

Implement an if-statement to limit the number of tasks in queue and to prevent errors. If the task_count
reaches 3000, it stops creating new tasks.

The while-loop will check if the current task_count has reached the set threshold (target_count) before
creating a new batch of tasks

The if-statement checks for finished tasks and prints out information on the number of tasks currently in
queue and a countdown of when a new batch of tasks will be created.

Data Preparation | 67

STEP 51

If the number of tasks is fewer than 3000 or if the new batch of tasks needs to be created, first check
whether the new imagery to be pooled is already in the Google Drive or in queue. This verification will
prevent duplication of tasks.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence68 |

Print to determine whether the files are in the save path or if they are still in queue.

Data Preparation | 69

Set c_lon and c_lat (i.e., longitude and latitude, respectively) to store the centroid coordinates obtained
from the centroid CSV.

Employ the centroid coordinates to define a geospatial circle using a GEE point geometry with a buffer
of 1920 meters. This buffer value corresponds to half of the grid size measured from the centroid to the grid
boundary.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence70 |

As illustrated in Step 6 of the section on Generating Centroids for Satellite imagery, buffer size is computed
as follows:

256 pixel x 15 meters/pixel = 3840 meter grid size
3840 / 2 = 1920 meter buffer size

where: 15 meters/pixel is the Landsat resolution

Data Preparation | 71

Redefine the geometry variable using the coordinates of the circle as its value.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence72 |

Next, define the export parameter using the task_config dictionary variable.

The task_config is composed of the following:

 scale – is the satellite resolution (10 meter/pixel – Sentinel; 15 meter/pixel – Landsat),
 region – is the area coverage to download, and
 driveFolder – is the folder path where the downloaded imagery will be stored.

Data Preparation | 73

Describe the image batch export object and name it as task. The image batch export object requires the
following parameters:

 satellite imagery (sat_imagery),
 filename to be used (imagery_file), and
 export parameter (task_config).

Finally, pass the task to GEE using the command task.start() and add another task to the task counter
variable task_count.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence74 |

Provide printouts of the number of tasks being pooled. To speed up the task creation process, execute
get_queued_task() only after every 1000 tasks to check the exact number of tasks in queue.

Data Preparation | 75

STEP 52

Implement the function download_satellite_imagery() and pass it on to the filtered GEE imagery
stored in the object satellite_imagery as the function’s argument. As the function runs, it prints out the
task information.

The following is the function printout when restarting the imagery download process, which displays all
the files that are still in queue.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence76 |

Below is the printout of the number of pending tasks and the downloaded and pending imagery, which
were skipped to avoid duplication.

Data Preparation | 77

STEP 53

Saving of imagery from the GEE to Google Drive consumes some time. Depending on the quantity of
imagery to download, the 12-hour Colab runtime may not suffice. Thus, it is necessary to run re-run the
code. In the browser, go back to Google Drive and verify if the files are downloaded.

Click the folder name to verify if the files are downloaded.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence78 |

Download all images for specific country and year. Click the folder name to reveal folder options. Then
press Download.

The download process starts after Google Drive has finished compressing the files.

Data Preparation | 79

STEP 54

Save the ZIP file in the working folder and then unzip the file.

Converting Format of Satellite Imagery
Use the Geospatial Data Abstraction Library (GDAL) to convert images into geo-tagged image file format
(geoTIFF). Crop the images to get the correct number of pixels. Prepare a *.tar.gz archive file of all input
JPG images for easier handling in Colab.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence80 |

STEP 1

Use the R code: Daytime_imagery_format_conversion.R.

Load the tidyverse and gdalUtilities packages.

Data Preparation | 81

STEP 2

Select the working directory using the function tk_choose.dir() from the package tcltk. This function
opens a window for choosing the directory containing the daytime satellite imagery. Set the folder path to
sat_imagery_folder.

Using the setwd() command, set the previously assigned folder (i.e., sat_imagery_folder in this illustration)
as the working directory.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence82 |

STEP 3

Use the function tk_choose.dir() from the package tcltk to open a window to select the CSV file
containing the grid centroids used to download the satellite imagery.

Load the CSV file as a df_centroid dataframe.

STEP 4

Create a destination folder using the function str_replace( ) to change the character TIF from the variable
sat_imagery_folder into JPG.

STEP 5

Create a new dataframe from df_centroid. In this dataframe, generate two columns containing the full
path of the TIF and JPG filenames and a separate column containing only the filename of the JPG files
without the file path.

Data Preparation | 83

STEP 6

Set the pixel resolution of each imagery based on the source satellite. Using the function str_detect(),
check the satellite imagery folder name for the embedded satellite code name.

STEP 7

Define the function to crop and convert the TIF files into JPG files. It takes the filename and path of the TIF
and JPG files as input. The function also prints out the TIF and JPG filename that are being processed.

STEP 8

Employ the function gdal_translate( ) from the gdalUtilities package to execute this task through the
following parameters:

 src_dataset – is the file path of the TIF input file.
 dst_dataset – is the file path of the JPG output file.
 srcwin = c(xoff,yoff,xsize,ysize) - selects a sub window from the source image for copying

based on pixel/line location and specify pixel count based on the satellite imagery source.
 of – refers to the output format “JPEG”.
 scale – is set to “” so that the input pixel values will not be changed.
 co - passes a creation option to the output format driver. This sets the JPEG output quality to

100% or no compression.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence84 |

STEP 9

Implement apply() function to go through each row of the TIF file listed in the dataframe and pass it on
to the custom function process_imagery().

STEP 10

Remove the column containing TIF and JPG file path.

Data Preparation | 85

STEP 11

Create a vector shapefile using the centroids coordinates. Load the package sf. Define the Coordinate
Reference System (CRS) variable for the shapefile.

STEP 12

Generate a duplicate of the centroid coordinates to preserve the data inside the shapefile’s attributes.
Then using the sf function st_as_sf(), create the shapefile. This will be used later in aggregating luminosity
values in GEE.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence86 |

STEP 13

Generate the filename for the shapefile. Prefix the centroid’s CSV filename with ”shp” and change the file
extension to “.shp”. Then output the vector shapefile. The shapefile is needed in for aggregating luminosity
values of each grid in GEE in the subsequent steps.

STEP 14

Create a gzip (.tar.gz) archive file containing the JPG files.

First, specify the filename of the archive file. Then use the tar( ) function to compress the JPG folder
through the following parameters:

 tarfile – is the output filename,
 file – is the destination path, and
 compression – is the archive file type “gzip”.

The JPG output folder and tar.gz file are saved in the same folder as the TIF folder.

Data Preparation | 87

STEP 15

On the Google Drive, click .

Then click File upload.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence88 |

STEP 16

Locate and select the tar.gz archive file containing the JPG images.

Nighttime Satellite Imagery Processing

Data Requirements

 DMSP-OLS/VIIRS annual composite nighttime lights

Tools

 Google Earth Engine

The following sections detail how to download nighttime satellite imagery and aggregating luminosity
values.

Nighttime lights (NTL) imageries covering 1992 to 2013 are available from the Defense Meteorological
Program (DMSP) Operational Line-Scan System (OLS) while NTL imageries covering 2012 to 2020 are
available from the Visible Infrared Imaging Radiometer Suite (VIIRS). DMSP-OLS and VIIRS imagery are
both hosted by the Earth Observation Group, Colorado School of Mines.

Data Preparation | 89

DMSP-OLS data are available as global coverage per year per image and can be downloaded from this link:
https://eogdata.mines.edu/dmsp/downloadV4composites.html.

VIIRS imagery are published as daily mosaic and monthly and annual composite images. Unlike
DMPS-OLS, VIIRS imagery is split into 6 tiles. Information on VIIRS NTL version 1 data is available from
this link: https://eogdata.mines.edu/products/vnl/. When downloading, take note of the tile where the
country of interest is covered.

https://eogdata.mines.edu/dmsp/downloadV4composites.html

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence90 |

For VIIRS, only 2015 and 2016 have annual composite images. Thus, GEE is used to create an annual
composite for years other than those aforementioned using the monthly composite imagery.

STEP 1

Download VIIRS nightlight satellite imagery version 1 for years with available annual composite images.

In the browser, go to the VIIRS website https://eogdata.mines.edu/nighttime_light/annual/v10/. Select, and
click the required year (e.g., “2015”).

https://eogdata.mines.edu/nighttime_light/annual/v10/

Data Preparation | 91

STEP 2

Select the tile where the country of interest is located. The tile information is the fourth group of
characters from the right. Save the file in the working directory. Note that the file is a tar.gz archive with a
size of approximately 4 GB.

Once download has finished, decompress the archive file.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence92 |

STEP 3

Crop out the nighttime imagery for the country of interest.

Open the Rcode Crop_NTL_imagery.R in Rstudio. From the top right bars, click to run the
entire script.

Load the required packages.

Data Preparation | 93

STEP 4

Use tk_choose.files() from the package tcltk to open a window for selecting and obtaining the country
level shapefile path. Please note that country level shapefiles are usually denoted as ADM0.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence94 |

STEP 5

Load the shapefile using the sf function read_sf( ).

STEP 6

Extract the bounding box coordinates of the shapefile using the function st_bbox() from the sf package.
Expand the bounding box to have some buffer. This can be done by rounding down ymin and xmin, and
rounding up ymax and xmax.

STEP 7

Select the directory containing the nighttime satellite imagery using the function tk_choose.dir() from
the package tcltk.

Data Preparation | 95

A window opens for selecting the directory containing the nighttime satellite imagery.

STEP 8

Extract the parent folder path of the nighttime satellite imagery and use it as the working directory through
the setwd() command.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence96 |

STEP 9

Obtain the filenames of all nighttime satellite imagery files that are stored in the folder.

STEP 10

Use an if-else statement to select the correct imagery product.

 For VIIRS, use the data product - vcm-orm-ntl with extension avg_rade9.tif.
 For DMSP-OLS, use data product - web.stable_lights.avg_vis.

Print the filename to check.

Data Preparation | 97

STEP 11

Generate the destination path where the cropped nighttime imagery and base name for the output file
will be saved.

STEP 12

Check if the destination folder already exists. If the folder does not exist yet, create it.

STEP 13

Run the gdal_translate( ) function from the gdalUtilities package to crop the nighttime satellite imagery.

STEP 14

The code’s output is stored in the folder with a prefix “cropped_”. Likewise, the geoTIFF file is prefixed.

It will later be uploaded to GEE for further processing.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence98 |

STEP 15

Compute the aggregate average luminosity per area, where every pixel’s night light intensity is considered.

Aggregation computation is done in GEE, where the shape for each area needs to be defined and nighttime
imagery for corresponding year needs to be provided. The total sum is divided by the number of pixels.

Use the code in file: viirs_mean_luminosity.js.

Data Preparation | 99

Upload the cropped nighttime lights imagery. Click Assets.

STEP 16

Click New.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence100 |

STEP 17

Click GeoTIFF.

STEP 18

Click Select and locate the cropped nighttime lights imagery.

Data Preparation | 101

STEP 19

Change the Asset ID. Make sure that the ID only contains letters and numbers.

STEP 20

Click Upload.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence102 |

The uploaded nighttime lights data will appear as a new asset.

STEP 21

This time upload the point shapefile. Again click New and select Shape files.

Data Preparation | 103

STEP 22

Click Select.

STEP 23

Locate the shapefile that was created from the code Daytime_imagery_format_conversion.R.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence104 |

STEP 24

Click Upload.

The uploaded shapefile will appear as a new asset.

Data Preparation | 105

STEP 25

Open the JavaScript ntl_mean_luminosity.js using a text editing software (e.g., Windows Notepad).

Select ”b1” band of viirs_annual raster and store it in the variable annual_composite.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence106 |

Define variable nlVis to store the map visualization parameters.

Use the grid centroid shapefile, which will be imported later, to put the map view in the center.

Data Preparation | 107

Visualize b1 band of the viirs_annual raster using visualization parameters defined in nlVis through the
command Map.addLayer( ).

Define the luminosity aggregation function, which takes the centroid and creates a circle buffer around it
with a radius that is half the grid size.

Get the average of the luminosity values within the buffer boundary using the reduceRegion( ) function.
The aggregated luminosity will be stored as a new column in the multipoint shapefile.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence108 |

Export the attribute table of the shapefile as CSV file into the Google Drive.

Copy the codes from the script ntl_mean_luminosity.js. Paste the code into the GEE Code Editor, then
click Save.

Data Preparation | 109

STEP 26

If a repository has not yet been created, GEE will prompt to provide a name for the new repository.
Click Create.

STEP 27

GEE will then prompt to input the script’s filename. A description of the script may be provided.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence110 |

The script will appear in the Script pane.

STEP 28

Click Assets.

Data Preparation | 111

STEP 29

Click the Import to script button to place the NTL into the script.

STEP 30

Rename the variable name from image to viirs_annual.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence112 |

STEP 31

Click the Import to script button to place the shapefile into the script.

Data Preparation | 113

STEP 32

Rename the variable name from table to pt_shp.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence114 |

STEP 33

Scroll to the bottom of the script and locate the section labeled “Export the FeatureCollection.”

Indicate a filename beside description. Then click Run.

Data Preparation | 115

STEP 34

Click Tasks. Note that the task name is the same as the description provided in the output.

STEP 35

Click Run to begin processing the code’s output.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence116 |

STEP 36

Verify all the information, including the filename and file format. Ensure that Drive is selected to save the
output into the Google Drive. Click Run.

A check mark will appear to the right of the task name indicating that the task is completed. It may take
some time to process.

Data Preparation | 117

STEP 37

Go to Google Drive to check for the output CSV file. Download and save the CSV file to the working folder.

STEP 38

From this point, data from the Philippines will be used to illustrate the succeeding steps.

For years without available annual composite imagery, use the Google Earth Engine (GEE). To create the
VIIRS annual composite imagery, use the script: custom_viirs_annual_composite.js.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence118 |

STEP 39

Open the JavaScript custom_viirs_annual_composite.js using a text editing software (e.g., Windows
Notepad) and copy the code.

STEP 40

Paste the code into the GEE code editor then click Save.

Data Preparation | 119

Change the filter date range and then click Save.

STEP 41

GEE will then prompt to input the script’s filename. A description of the script may be provided.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence120 |

The script will appear in the Script pane.

STEP 42

Go to Assets then click the Import to script button to place the shapefile into the script.

Data Preparation | 121

STEP 43

Rename the variable name from table to pt_shp.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence122 |

Step 44

Locate the section labeled “Export the FeatureCollection” at the bottom of the script. Indicate a filename
beside description then click Run.

STEP 45

Go to Tasks. Note that the task name is the same as the description provided in the output. Click Run to
begin processing the code’s output.

Data Preparation | 123

STEP 46

Verify all the information including the filename and file format. Ensure that Drive is selected to save the
output into the Google Drive. Click Run.

A check mark will appear to the right of the task name indicating that the task is completed. Note that it
may take some time to process this task.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence124 |

STEP 47

Go to Google Drive to verify the output file. Download and save the CSV file to the working folder.

Binning Luminosity Values and Splitting Dataset
Actual nighttime luminosity values are binned into different levels or classes following the approach
implemented in the study by Jean et al. (2016) (footnote 1). Binning is done to facilitate more effective
training of CNN models. It is implemented using Gaussian mixture models (GMMs). GMMs assume that
the distribution of univariate night light intensities comes from the mixture of k-underlying normal or
Gaussian distributions and find the set of normal distributions that best fit the data. Based on these, the
probability of each observation belonging to each group is derived.

Nighttime luminosity values are grouped into three classes which were found optimal based on
experimentation. These are low class, medium class, and high class.

Splitting of datasets is done by performing random sampling within each luminosity bin to preserve overall
class distribution. The result is a balanced split of the dataset.

Data Preparation | 125

STEP 1

Use the R script Binning_and_splitting.R to bin luminosity values.

First, load the required packages.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence126 |

STEP 2

Select the CSV file containing the average luminosity values.

STEP 3

Set the CSV file’s folder path as the working directory.

Data Preparation | 127

STEP 4

Load the CSV file as the dataframe – datapoints.

STEP 5

Check the data using the head( ) function.

STEP 6

Using the result of head( ) function, specify the name of the column values and assign it to variable ntl_col.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence128 |

The luminosity column name that is used by GEE is based on the name of the raster’s band, e.g., b1.
Generate a subset of this column containing the average luminosity values and store it in the variable
avector.

STEP 7

Use the class ( ) function to examine if the extracted luminosity values are of numeric type.

STEP 8

Run the GMM model to produce 3 clusters.

Data Preparation | 129

STEP 9

Display the model summary.

Note that there are instances when GMM cannot cluster the data into 2, 3, 4, or 5 clusters because the
corresponding cluster distribution is not found. These cases are assumed to be related to country-specific
night lights.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence130 |

STEP 10

Using an if-else statement, determine the course of action that should be taken from the result of the
initial GMM calculation.

Data Preparation | 131

Display the bin classification to check if the initial calculation produced results.

STEP 11

Merge the cluster results with the original dataset. Then select the following relevant columns:

 id – grid ID,
 lon, lat – centroid coordinates,
 geocode – administrative boundary code,
 avg_rad – luminosity column (renamed to avg_rad),
 bin_GMM – bin column, and
 filename – imagery filename.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence132 |

STEP 12

If the initial calculation yields a null result, generate a subset of the original dataset to extract all positive
non-zero luminosity values.

Data Preparation | 133

STEP 13

Generate another subset of the column containing the average luminosity values and store it in the
variable non_zero_avector.

STEP 14

Re-run the GMM model to determine the 3 clusters.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence134 |

STEP 15

Print the summary of resulting clusters.

Data Preparation | 135

STEP 16

Merge the resulting clusters with the non-zero subset and retain only the id and bin_GMM columns.

STEP 17

Merge the binned non-zero dataset with the original dataset using the left_join( ) function.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence136 |

STEP 18

Classify all zero luminosity values in cluster 1.

STEP 19

Select the relevant columns.

Data Preparation | 137

STEP 20

Determine the cutoff values for each bin.

Alternatively, one can use heuristic methods if the GMMs do not provide optimal clusters.

STEP 21

Merge the government-published poverty and population data with the dataset in preparation for machine
learning.

Select the government-published dataset.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence138 |

STEP 22

Load the CSV file as a dataframe.

Data Preparation | 139

STEP 23

Assess the structure of the datasets and identify the common variable for joining the two datasets.

STEP 24

Merge the binned luminosity and government-published datasets using the left_join( ) function with the
geocode and PSGC_code as the join variable.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence140 |

STEP 25

Check the structure of the new dataset structure to ensure that the two datasets are merged.

Data Preparation | 141

STEP 26

Split the dataset into training and test sets. It is up to the user to decide on an optimal splitting strategy. In
the ADB study (footnote 2), the dataset was split into two: 90% for training and 10% for test. The training
dataset will be used for training the CNN model. This dataset is further split into 80% for training and 20%
for validation through fastai. After developing the trained model, the test dataset will be used to validate
its accuracy.

First, load the package caret. This package contains the function createDataPartition( ) that will enable
the generation of a balanced split in the dataset. createDataPartition( ) returns the row index of the
dataset belonging to the specified split.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence142 |

STEP 27

createDataPartition( ) requires the following parameters:

 column of dataset for the basis of the split,
 times – number of split to perform, in our case only one,
 p – split ratio in our case 0.9 or 90%, and
 list = FALSE – to output the data as a matrix. This will be used when subsetting the dataset.

STEP 28

Extract the training and test datasets from the subset of the dataset.

Data Preparation | 143

STEP 29

Check the dataset’s structure.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence144 |

STEP 30

Check the number of observations per dataset by displaying the number of rows.

STEP 31

Output the two datasets as CSV files.

Data Preparation | 145

STEP 32

Upload the files in Google Drive. This will be used for training the CNN model.

 TRAINING OF CONVOLUTIONAL
NEURAL NETWORK

A convolutional neural network (CNN) is a subclass of artificial neural networks that is primarily used
in computer vision (e.g., classification, recognition). It is designed to cope with a large amount of

unstructured and pixelated data from digital images. In this context, a CNN is trained to extract features in
daytime images using intensity of night lights as labels. These extracted features are then used to predict
poverty.

STEP 1

In the browser address bar, input the Google Colab (footnote 7) web address https://colab.research.
google.com/ and press Enter from the keyboard. Make sure to log in to Google account. Then click Upload.

4

Data Requirements

 Archive file containing daytime satellite imagery (JPG)
 CSV file containing binned luminosity

Tools

 Google Colaboratory (CNN_training_template.ipynb)

https://colab.research.google.com/
https://colab.research.google.com/

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence148 |

STEP 2

Click Choose File.

Locate the Jupyter Notebook file from the computer. Use CNN_training_template.ipynb. Click Open.

Training of Convolutional Neural Network | 149

STEP 3

Setup the runtime type once the file has loaded. Click Runtime on the menu bar.

Then click Change runtime type.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence150 |

STEP 4

On the Notebook settings, change Hardware accelerator into GPU. Then click Save.

STEP 5

Click Connect.

Training of Convolutional Neural Network | 151

This will initialize the Colab’s environment.

STEP 6

To execute, click each code cell and click button at the beginning of each cell.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence152 |

Setup and mount the Google Drive (footnote 6).

STEP 7

In the browser, sign in to your Google account.

Training of Convolutional Neural Network | 153

Click Allow.

Click the Copy icon to copy the code.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence154 |

STEP 8

Return to the Colab browser tab. Paste the code in the text box. Then press Enter.

A status will show the path where Google Drive is mounted.

STEP 9

Ensure that modules are reloaded automatically and any charts or images displayed are shown in this
notebook.

STEP 10

Locate the path to the CSV file containing the binned luminosity values that was previously uploaded in
Google Drive.

Training of Convolutional Neural Network | 155

STEP 11

Click Files icon to show the Files section.

STEP 12

Click gdrive from the list of folders and expand the file directory tree to find the CSV file location.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence156 |

STEP 13

Click the vertical ellipsis to show more file options.

STEP 14

Click Copy path.

Training of Convolutional Neural Network | 157

STEP 15

Paste the link on the blank space after the variable csv_path and enclose in apostrophes.

STEP 16

Execute the code cell to check the contents of the first five rows of the CSV file.

The information on the column contents will be used later in building the ImageDataBunch object,
particularly the binned luminosity and filename column.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence158 |

STEP 17

Import os and shutil python modules and create folder data in the Colab virtual machine’s drive.

STEP 18

Click Files icon to show the Files section.

Training of Convolutional Neural Network | 159

STEP 19

From the list of folders, click gdrive.

Expand the file directory tree to find the location of the tar.gz file.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence160 |

STEP 20

Click the vertical ellipsis to show more file options.

STEP 21

Click Copy path.

Training of Convolutional Neural Network | 161

STEP 22

Paste the link beside the variable tar_file and enclose it in apostrophes.

STEP 23

Count the number of daytime imagery files extracted.

STEP 24

The CNN training process starts in this step.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence162 |

Import all the necessary packages in fastai.

STEP 25

Check the fastai version to determine if the latest version is running.

STEP 26

Define all the parameter variables needed to create the ImageDataBunch. Load re library to be used for
string manipulation.

Training of Convolutional Neural Network | 163

STEP 27

The root_col variable stores the root directory path containing the daytime satellite images. The valid_pct
command stores the percentage of dataset used for validation.

From the previous code, check the data contained in the CSV file, particularly the bin_GMM and filename.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence164 |

STEP 28

The label_col command stores the name of binned-luminosity-containing column. The filename_col
command stores the name of the filename-containing column.

STEP 29

Extract the country code, year, daytime satellite imagery code, and imagery file resolution from the tar.gz
filename. Then store them in variables country, year, day_sat, and img_res, respectively.

Training of Convolutional Neural Network | 165

STEP 30

Generate and print the filename to be used when saving the learner and model objects.

STEP 31

Define the image transformation to be applied to the daytime images, like vertical flipping, random lighting
and contrast change with 10% probability, dihedral and symmetric warp. This is called data augmentation.
Data augmentation is used to increase the number of samples in the training dataset, to get the model to
generalize better, and to mitigate imbalanced classes in dataset. It also prevents the model from overfitting. In
effect, it increases the accuracy of the model.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence166 |

STEP 32

Define the ImageDataBunch.

ImageDataBunch is a fastai object, which stores the path to the image folder, training dataset, augmentation,
and other settings of the training.

STEP 33

View the first 25 images of the training dataset.

Training of Convolutional Neural Network | 167

STEP 34

Create a CNN learner object with the pre-trained model, training and validation datasets, metrics, and
loss function as arguments. A model is the combination of mathematical functions and parameters
or weights. Both metrics and loss functions measure the model’s performance, but they differ in use.
Metrics are used by researchers to define the performance of their models, while loss functions are used
by the deep learning platform to update the model’s weights during training.9

Set the CNN model parameter to ResNet-34 and metrics to error_rate. Resnet models have been
trained on an image-net database of over 14 million images, with 1.2 million of them assigned to one
of a thousand categories. It has different variants like ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-110, and ResNet-152, which differ in the number of layers. According to PyTorch documentation
(https://pytorch.org/docs/stable/torchvision/models.html), ResNet-34 has higher accuracy and six
times fewer parameters compared to the pre-trained model VGG. The reduced file size of ResNet-34 is
important since no dedicated stand-alone hardware is used for training the model. Though ResNet-18 has
smaller number of parameters and smaller file size, ResNet-34 performs better.

The learner also uses a weighted Cross Entropy loss function to mitigate imbalanced prediction classes.
It penalizes the model for wrong prediction of low frequency class (i.e., 3- high nightlight) based on weight.
It also prevents the model from tending to predict more of low nightlight classes 1 and 2 because these
classes have the most samples. Weights [0.7,1.0,1.1] are chosen based on experiments. In general, however,
users may define other weights as deem suitable (see Box 1).

STEP 35

Define the callbacks. In fastai, callbacks are functions that are executed when an “event” occurs during
the training process.

9 “Lesson 2 - Deep Learning for Coders (2020)”, Youtube video, 1:31:04, posted by Jeremy Howard on 22 August 2020.
https://www.youtube.com/watch?v=BvHmRx14HQ8.

https://pytorch.org/docs/stable/torchvision/models.html

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence168 |

The first callback function saves the weights of the best training cycle in the batch into a .pth file with
specified filename.

The second callback function displays a graph of training and validation dataset loss during training.

The last callback function stops the training batch when there are three consecutive training cycles that
did not improve the model.

STEP 36

Execute the code to train the model using the dataset. Since the pre-trained CNN is used, the weights are
already in place and thus the number of training epochs can be lower. An epoch is equal to one cycle of
training through all the training dataset.

Unfreeze the last layer group and train it for 14 epochs. The layer group being trained will determine the
final predictions. This will create new weights for the layer group that will identify what an image looks like
if it belongs to either of the three luminosity intensity classes (i.e., 1=low, 2=medium, 3=high).

A higher epoch can be used, however, a point will be reached when the errors no longer change. Even if the
training continues further, the last best model will still be saved through the first callback function. Also, as
specified in the third callback function, the training stops after three consecutive cycles without the model
improving. This will save time and computing resources.

A weight decay of 0.1 is also used, following the best practice for fastai as suggested by its developers.
Weight decay is a model regularization technique where it penalizes parameters (weights) to prevent

Training of Convolutional Neural Network | 169

overfitting. Too large a weight decay could prevent the model from fitting well, in other words, the model
is not “learning”. Too small a weight will make the model over-fit earlier.10

Upon execution, the following will be displayed:

 tabulated training, validation loss, and error rate per training cycle (epoch),

10 “Lesson 5: Deep Learning 2019 - Back propagation; Accelerated SGD; Neural net from scratch”, Youtube video, 2:13:33, posted
by Jeremy Howard on 26 January 2019. https://www.youtube.com/watch?v=CJKnDu2dxOE.

https://www.youtube.com/watch%3Fv%3DCJKnDu2dxOE

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence170 |

 training and validation loss graph, which is the second callback function, and

Training of Convolutional Neural Network | 171

 resulting models with better error_rate from each epoch.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence172 |

STEP 37

Unfreeze the last two layer groups of the model.

Find the best learning rate. The learning rate specifies the degree of change of the parameters. The
parameters are adjusted based on the gradient to decrease the loss function. A cyclical learning rate
approach eliminates the need to experimentally find the best values and schedule for the global learning
rates. Instead of monotonously decreasing the learning rate, this method lets the learning rate cyclically
vary between reasonable boundary values. Training with cyclical learning rates instead of fixed values
achieves improved classification accuracy without the need to fine-tune and iterate.

Training of Convolutional Neural Network | 173

Plot the best learning rate.

Take note of the range of learning rate before the loss starts to rise.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence174 |

STEP 38

Unfreeze the last two layer groups.

Train for six more epochs.

Training of Convolutional Neural Network | 175

Specify the learning rate range generated from the previous graph.

STEP 39

Define the interpretation methods for classification models. Generate a confusion matrix and visualization
of the images with inconsistencies. A confusion matrix or error matrix can validate and enhance the
performance of the machine learning classification-related tasks by comparing the number of correct and
incorrect predicted images and employing a particular loss function to minimize imbalanced prediction losses.

Extract the top losses and the corresponding image ID.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence176 |

Check if the validation dataset, losses, and image IDs (idx) are of the same number.

STEP 40

Plot the satellite images with highest training losses or with inconsistencies.

Take note of any inconsistences between the input data and the output class (e.g., low-quality day images,
high percentage of cloud cover, or illogical nightlight category).

Training of Convolutional Neural Network | 177

STEP 41

Print the corresponding image filenames of satellite images with high loss function values. In this example,
the filenames of the top 50 satellite images with high loss function values are displayed.

Plot the confusion matrix to further validate the training process. On the vertical axis, list the known classes
for each image, in this case the nighttime light intensity. On the horizontal axis, list the predictions from
the CNN. Each cell contains the number of images for true and predictive classes. Correctly predicted
images lie on the main diagonal and every other image lies on the off diagonal. As the classes are ordinal
(class1 < class2 < class3: low < middle < high intensity), it holds that the farther away the values are from
the main diagonal, the larger the error. (Note: Other projects might have non-ordered classes like “cats
versus dogs”, hence, the distance to the diagonal is irrelevant.) These values should be as small as possible
to avoid “big mistakes” during prediction.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence178 |

STEP 42

Present the list of largest non-diagonal entries of the confusion matrix. This refers to actual, predicted, and
number of occurrences.

 Number of occurrences

 Predicted
Actual

One cell of
confusion matrix

{

Training of Convolutional Neural Network | 179

Box 1. Steps in Adjusting Weights of Cross Entropy Loss Function

1. Start with equal weights of [1.0, 1.0, 1.0].

2. Unfreeze the last layer and train for 14 epochs.

3. Plot and check the confusion matrix results.

Try to achieve a relatively balanced matrix.

• In Figure A, the equal weights created a confusion matrix with more predictions below the
diagonal.

• In Figure B, the extreme low and extreme high 1st and 3rd weights are tried, respectively. This
resulted in a higher prediction above the diagonal.

• In Figure C, a relatively balanced matrix is achieved.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence180 |

STEP 43

Define the function for removing “anomalous” images from the training and validation dataframe.

If there is a significant number of inconsistencies between input data and output class (e.g., low-quality
daytime images, too cloudy images), remove these instances from the original dataframe. Since the
ImageDataBunch contains labels and image file path, remove these images using their filenames as subset
parameters for the dataframe.

STEP 44

Print the indexes of the images belonging to the top 50 highest losses. Based on the image plot of the 50
top losses, select the “anomalous” images to be removed. Note that this step is optional.

Training of Convolutional Neural Network | 181

STEP 45

Assign the selection as a list data type to the variable selected_index. Call the drop_image( ) function to
pass the index of images to be dropped.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence182 |

STEP 46

Execute the code cell.

The function will print out the data associated with the images.

Confirm the filenames of the images.

Training of Convolutional Neural Network | 183

STEP 47

After removing the “anomalous” data, repeat steps to generate a ImageDataBunch, creating learner and
training for 14 epochs with the dataset.

STEP 48

Unfreeze the last three layer groups of the model. Find the best learning rate and plot it.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence184 |

STEP 49

Unfreeze the last three layer groups and train for six more epochs using the learning rate range determined
from the previous graph.

In this scenario, note that the model did not improve after three cycles, thus the training was terminated.

Training of Convolutional Neural Network | 185

STEP 50

Unfreeze all layer groups and determine the best learning rate again.

STEP 51

Unfreeze all the layers and train for three more epochs using the learning rate from the previous graph.
This step ensures the consistency of the whole network.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence186 |

STEP 52

Define again the interpretation methods for classification of models. Extract the top losses and the
corresponding image ID. Lastly, check if the validation dataset, losses, and image IDs (idx) are of the same
length.

STEP 53

View the images again showing the top losses from the model’s prediction, actual value, training loss, and
probability.

Training of Convolutional Neural Network | 187

STEP 54

Generate the confusion matrix to validate the training process.

STEP 55

Save the learner object and model weights in Google Drive.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence188 |

STEP 56

Test the trained CNN model using the 10% test dataset.

First, clear the virtual memory.

Training of Convolutional Neural Network | 189

STEP 57

Prepare the ImageDataBunch for the test dataset and load the trained CNN model and learner objects.

STEP 58

The code cell will output information regarding the data split and confusion matrix.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence190 |

STEP 59

Plot the top 25 images with high losses and overlay a heatmap to indicate areas in the images that the
CNN considers as important for actual nightlight class.

Training of Convolutional Neural Network | 191

STEP 60

Then define the evaluate_model_from_interp( ) function to evaluate the overall accuracy of the model.

 CONVOLUTIONAL
NEURAL NETWORK MODEL
 FEATURE EXTRACTION

After training the CNN, the next step is to extract the abstract satellite image features that are correlated
with the intensity of night lights. This is done by altering the model such that it generates the features

from the last hidden layer as an output rather than as a regular classification category output. In this case,
the feature vectors that the CNN uses to specify the intensity of night lights are extracted.

STEP 1

For feature extraction, open a new notebook file. Click File.

5

Data Requirements

 Archive file containing daytime satellite imagery (JPG)
 CSV file containing binned luminosity values and government-published poverty estimates
 Trained CNN model

Tools

 Google Colaboratory (footnote 7) (CNN_training_template.ipynb)

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence194 |

Then click Upload Notebook.

STEP 2

Click Choose File. Use the Jupyter Notebook file CNN_feature_extraction.ipynb.

Convolutional Neural Network Model Feature Extraction | 195

Locate the file and Click Open.

STEP 3

Setup the runtime type once the file has loaded. Click Runtime on the menu bar.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence196 |

On the Notebook settings, change Hardware accelerator into GPU. Then click Save.

Convolutional Neural Network Model Feature Extraction | 197

STEP 4

Click Connect.

This will initialize the Colab environment.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence198 |

STEP 5

For environment setup, mount Google Drive (footnote 6) to Google Colab.

STEP 6

In the browser, sign in to Google account.

Convolutional Neural Network Model Feature Extraction | 199

Click Allow.

Click Copy icon to copy the code.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence200 |

Return to the Colab browser tab. Paste the code in the text box. Then press Enter.

A status will show the path where Google Drive is mounted.

STEP 7

Ensure that modules are reloaded automatically and any charts or images displayed are shown in the
notebook.

STEP 8

Locate the path of the training dataset’s CSV file.

Convolutional Neural Network Model Feature Extraction | 201

STEP 9

Click Files icon to show the Files section.

STEP 10

Click gdrive from the list of folders and expand the file directory tree to find the CSV file location.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence202 |

STEP 11

Click the vertical ellipsis to show more file options.

Convolutional Neural Network Model Feature Extraction | 203

STEP 12

Click Copy path.

STEP 13

Paste the link on the blank space after the variable train_dataset and enclose in apostrophes.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence204 |

STEP 14

Create an identifying column in the training and test datasets, merge the two, sort the dataframe by grid ID,
and print out the first four rows of the dataset.

STEP 15

Load os and shutil packages for operating system functionality and for unpacking archive files, respectively.

Convolutional Neural Network Model Feature Extraction | 205

STEP 16

Click Files icon to show the Files section.

STEP 17

From the list of folders, click gdrive and expand the file directory tree to find the targ.gz file location.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence206 |

STEP 18

Click the vertical ellipsis to show more file options.

Convolutional Neural Network Model Feature Extraction | 207

STEP 19

Click Copy path.

STEP 20

Paste the link beside the variable tar_file and enclose it in apostrophes.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence208 |

STEP 21

Generate the different parameters for the CNN model.

Check if all satellite imagery in the CSV file are present in the folder.

STEP 22

Delete the rows in the dataframe that do not have a corresponding imagery, otherwise fastai’s databunch
will not work.

Convolutional Neural Network Model Feature Extraction | 209

STEP 23

Define the necessary parameters for creating ImageDataBunch.

STEP 24

Import all libraries that are needed for the extraction of features from the trained CNN model.

STEP 25

Load the dataset to the ImageDataBunch.

STEP 26

Create a learner object from the fastai library containing the datasets (i.e., images and labels) without the
pre-trained CNN.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence210 |

STEP 27

Copy the pre-trained model from Google Drive to the Google Colab virtual machine drive.

STEP 28

Load the trained CNN model and merge it with the dataset in the learner object. It also outputs the
ImageDataBunch information and structure of the model layers.

Convolutional Neural Network Model Feature Extraction | 211

STEP 29

Select two test images from the dataframe and load them into the python environment. This is helpful
when trying out functions that operate on images.

STEP 30

Insert the predict function as a method of the learner class. This method returns only the node values of
the last layer in the model, which are normally probabilities of each output category.

STEP 31

Compare the result of the predict function with the custom predict function that was previously defined.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence212 |

STEP 32

Generate a new model without the last fully connected layer.

Convolutional Neural Network Model Feature Extraction | 213

STEP 33

Define a new function that extracts the tensor of the image features. Then measure the tensor length.
Tensors are multidimensional arrays. It functions like a numpy array however it has an added benefit
where it can be calculated on a graphics processing unit.9

STEP 34

Before predicting image features, create an empty array for storing extracted features and a dataframe
containing image file names.

STEP 35

Loop through the images and extract the features.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence214 |

STEP 36

Merge the extracted features with the image file names.

STEP 37

Save the CSV file to Google Drive, which will be used for ridge regression.

6 RIDGE REGRESSION

In the final training step, ridge regression is implemented to determine the relationship between the
image features and the government-published poverty rates. The data derived from these features are

aggregated by getting the element-wise average values of the vectors at the same geographic level as the
government-published poverty rate. Ridge regression is linear like ordinary least squares regression, but it
applies a squared penalty term (lambda) on the parameters to avoid overfitting in the case of a small ratio
of observations to covariates. In principle, however, one may also consider using other model estimation
methods like random forest to assess the sensitivity of estimates in the chosen estimation method.

STEP 1

For ridge regression, upload a new notebook file in Google Colab (footnote 7). Click File.

Data Requirements

 CSV file containing binned luminosity and poverty estimates
 CSV file containing image level features

Tools

 Google Colaboratory (Ridge_regression.ipynb)

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence216 |

STEP 2

Click Upload Notebook.

STEP 3

Click Choose File.

Ridge Regression | 217

Use the Jupyter Notebook file Ridge_regression.ipynb. Locate the file and click Open.

STEP 4

Click Connect. This will initialize the Colab environment.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence218 |

STEP 5

Mount Google Drive (footnote 6) to Google Colab.

STEP 6

Click on the link.

STEP 7

In the browser, sign in to Google account.

Ridge Regression | 219

Click Allow.

Click Copy icon to copy the code.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence220 |

Return to the Colab browser tab. Paste the code in the text box. Then press Enter.

A status will show the path where Google Drive is mounted.

STEP 8

Ensure that any edits made on the libraries are reloaded automatically and any charts or images displayed
are shown in this notebook.

Ridge Regression | 221

STEP 9

Locate the path to the dataset containing the binned luminosity and poverty rates.

Click Files icon to show the Files section.

STEP 10

Click on gdrive from the list of folders and expand the file directory tree to find the CSV file location.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence222 |

STEP 11

Click the vertical ellipsis to show more file options.

Ridge Regression | 223

STEP 12

Click Copy path.

STEP 13

Paste the link on the blank space after the variable CENI_full_file and enclose in apostrophes.

Import the CSV file containing the merged training test dataset from Google Drive.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence224 |

STEP 14

Define the different parameters needed for the model.

STEP 15

Drop all rows with “NA” values.

STEP 16

Load the feature dataset, which is the output of the feature extraction notebook, in the virtual machine
drive. It is then loaded as a dataframe.

Ridge Regression | 225

STEP 17

Compare the filenames of the daytime satellite imagery that were processed during feature extraction
with the filename list from the original CSV file containing binned luminosity and poverty rates.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence226 |

Delete all rows in the original CSV file that contain filenames that were not processed during feature
extraction.

STEP 18

Generate a new dataframe containing only the geocode and filenames column and drop duplicate
geocode entries.

STEP 18

Generate a new dataframe containing only the geocode and filenames column and drop duplicate
geocode entries.

STEP 19

Generate a new dataframe containing only the training poverty data.

Ridge Regression | 227

STEP 20

Merge the geocode-filename dataframe with the features dataframe.

STEP 21

Compute the average features by geocode group and generate one feature vector per geocode.

STEP 22

Merge the training poverty and averaged features dataframes.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence228 |

STEP 23

Load the packages needed to perform ridge regression.

STEP 24

Implement the following steps:

 Determine geocodes of outliers from the averaged features based on the defined standard
deviation specified in the variable outlier_flag.

Ridge Regression | 229

 Extract the validation datasets and drop the outliers.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence230 |

 Create separate dataframes for full, training, and test datasets.

Ridge Regression | 231

STEP 25

Set the parameter space for lambda (the ridge regression penalty term) that needs to be searched through.

STEP 26

Perform ridge regression.

STEP 27

Identify the model with the best CV score.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence232 |

STEP 28

Define the function for computing R-squared and root mean square error (RMSE).

Ridge Regression | 233

STEP 29

Implement the calculations for the training, validation, and the entire dataset.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence234 |

STEP 30

Generate the regression statistics outputs as CSV file and copy them in Google Drive.

STEP 31

Import the matplotlib library used for data visualization. Then define a function for plotting a 45-degree
fit line.

Ridge Regression | 235

STEP 32
Plot the government-published poverty rates against the predicted poverty rates.

STEP 33
Load the Python pickle library, which then exports the ridge regression model. Copy the file to Google Drive.

STEP 34
Then reload the saved model parameters.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence236 |

STEP 35

Extract the array of the image level features, collapse it into a one-dimension array to get the predicted
poverty rates, and generate a dataframe with the corresponding imagery filename as the index.

Then, merge the poverty prediction dataframe with the data frame containing the government-published
poverty rates using the imagery filename as the merging parameter.

STEP 36

Generate the poverty prediction output file as a CSV file. Then copy these results to Google Drive.

 RESCALING OF
POVERTY ESTIMATES
AND VISUALIZATION

STEP 1

In RStudio, use the R code: Rescaling_and_visualization.R.

7

Data Requirements

 CSV file containing poverty estimates
 Machine learning based population estimate raster

Tool
 R and RStudio (Rescaling_and_visualization.R)

continued on next page

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence238 |

STEP 2

Load raster and tidyverse packages.

STEP 3

Define the folder where the temporary raster files will be saved or create the folder if it does not exist.

For raster calculations, set several raster package options to improve the speed of calculation. The important
options are as follows:

 maxmemory – maximum number of bytes to read into memory.
 chunksize – maximum number of bytes to read/write in a single chunk while processing (chunk

by chunk) disk-based raster objects.

Other options are:

 progress – ‘text’: displays raster operation progress bar
 tmptime – number of hours before a temporatry file gets deleted from the tmpdir.
 tmpdir – location for writing temporary file.
 timer – TRUE: outputs the raster calculation duration.

Step 1 continued

Rescaling of Poverty Estimates and Visualization | 239

STEP 4

Define the coordinate reference system for WGS84.

STEP 5

Select the CSV file containing the ridge regression poverty estimates.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence240 |

STEP 6

Set the CSV’s parent directory as the working directory. Extract the country code and year of study using
information from the CSV filename. Then, define the government-published poverty estimates’ column
name. Load the CSV file as a dataframe.

STEP 7

Subset the predicted poverty dataframe to get the grid ID (id) and the latitude (lat) and longitude (lon),
and rasterize the resulting dataframe using the function rasterFromXYZ( ).

The function rasterFromXYZ( ) generates raster from regular grids like the dataset used. The function
assumes that the minimum distance between x and y coordinates is the raster resolution.

STEP 8

Load the machine learning population raster.

Rescaling of Poverty Estimates and Visualization | 241

STEP 9

Check if the population raster is using WGS84 CRS. Otherwise, reproject the raster. Print out the new CRS
of the population raster. Also, compare the resolution of the population and poverty grids. Note from the
results that the population and centroid rasters have different resolutions.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence242 |

STEP 10

Calculate the adjustment_factor first because the two rasters have different resolutions.

Aggregate the population headcount of the machine learning population raster at the poverty grid level,
which will be used to rescale the ridge regression poverty prediction. Using the aggregate( ) function,
aggregate the population in the poverty grid using the calculated adjustment_factor. Then, resample the
aggregated population raster to match the resolution of the centroid raster.

STEP 11

Set the aggregated population raster layer’s name to “gridpop”. Stack the centroid and aggregated
population raster, then convert the raster stack as a dataframe. Merge the created dataframe with the
predicted poverty dataframe.

STEP 12

Prior to rescaling, check if there are poverty prediction values that are either negative or more than 100%.
Set the negative values to 0.0001 and adjust the values above 100% to 100%.

Rescaling of Poverty Estimates and Visualization | 243

STEP 13

Rescale the poverty predictions. Convert the predicted poverty rates to index values by dividing the values
by 100.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence244 |

STEP 14

Convert the government-published poverty rates to index values by dividing the values by 100.

STEP 15

Calculate the grid level poverty headcount by multiplying the grid population by the predicted poverty index.

STEP 16

Calculate the government-published poverty headcount.

Rescaling of Poverty Estimates and Visualization | 245

STEP 17

Group the data according to geocode.

STEP 18

Derive the rescaled predicted poverty headcount for each grid by multiplying the grid’s predicted poverty
headcount by the ratio of the sum of the government-published and predicted poverty headcounts. This is
calculated for each geocode group.

STEP 19

Calculate the rescaled poverty index by dividing the rescaled predicted poverty headcount by the grid
level population counts.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence246 |

STEP 20

Ungroup the dataframe.

STEP 21

Check if there are rescaled poverty indexes above 1; set to 1 if there are any.

Rescaling of Poverty Estimates and Visualization | 247

STEP 22

Generate the poverty raster.

Generate poverty rasters for both predicted and rescaled predicted poverty index using the raster function
rasterfromXYZ( ).

The parameters supplied are the centroid coordinates (lat and lon) and the corresponding data to be
rasterized.

STEP 23

Define the folder where the raster will be saved or create the folder if it does not exist.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence248 |

STEP 24

Output the raster using the writeRaster( ) function.

STEP 25

Visualize the raster. Load another raster visualization package, rasterVis (aside from ggplot2, which was
already loaded as part of the tidyverse package).

Rescaling of Poverty Estimates and Visualization | 249

STEP 26

Define plot_raster( ) function that will aid in plotting the raster.

The function requires two objects, a raster (rast) and a list (p_var). p_var contains the following
parameters:

 category – a vector object containing the interval classes for reclassifying the raster values,
 scale_title and scale_label – define the scale bar title and labels, respectively,
 map_title – defines the map title, and
 filename – specifies the filename of the map for saving as png image file.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence250 |

Inside the function, set the theme to black and white.

Rescaling of Poverty Estimates and Visualization | 251

STEP 27

Using the supplied category, reclassify the raster values

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence252 |

STEP 28

Create a gplot object and set the categorized raster as the data source. gplot is a wrapper for plotting
raster.

Rescaling of Poverty Estimates and Visualization | 253

STEP 29

Specify the raster’s value as the object fill using the geom_tile( ) function.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence254 |

STEP 30

Using the scale_fill_brewer( ) function, specify the following:

 name – scale title,
 palette – color palette of the map and scale, which is set to Red-Yellow-Green (”RdYlGn”),
 direction = -1 – reverses the color palette order from “RdYlGn” to “GnYlRd”, and
 labels – scale label to match the categorical grouping of the dataset.

Rescaling of Poverty Estimates and Visualization | 255

STEP 31

Specify the map title and leave the x and y axes unlabeled.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence256 |

STEP 32

Remove axis text, tick marks, gridlines, and borders (optional).

Rescaling of Poverty Estimates and Visualization | 257

STEP 33

Set the Cartesian coordinates to a fixed aspect ratio (coord_fixed( )) which is a 1:1 ratio of x and y values.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence258 |

STEP 34

Save the plot as png image format using the filename to be supplied in the variable p_var.

Other supported image format are “eps”, “ps”, “tex” (pictex), “pdf”, “jpeg”, “tiff”, “png”, “bmp”, “svg” or “wmf”.

Rescaling of Poverty Estimates and Visualization | 259

STEP 35

Return the gplot object so that it will automatically show in the viewer pane upon function call.

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence260 |

STEP 36

Set the maps’ save path and create a folder if it does not exist.

STEP 37

Specify the parameters needed by the function and pass on the raster object and the parameters to the
function.

Rescaling of Poverty Estimates and Visualization | 261

The resulting poverty maps—machine learning (predicted and calibrated) and government-published—
for the Philippines are shown in Figure 2 and for Thailand in Figure 3.

Philippines, 2015
Machine Learning-Predicted Poverty Map

Philippines, 2015
Calibrated Machine Learning-Predicted Poverty Map

Philippines, 2015
Published Poverty Map

Figure 2: Machine Learning and Published Poverty Rate Maps of the Philippines, 2015

Note: The first two images present the uncalibrated and calibrated machine learning-based poverty rate estimates in (approximately)
every 4 square kilometer grid, respectively. The third image shows the municipal or city-level poverty rates published by the Philippine
Statistics Authority.
Source: Calculations and graphics generated by the study team.

Thailand, 2015
Machine Learning-Predicted Poverty Map

Thailand, 2015
Calibrated Machine Learning-Predicted Poverty Map

Thailand, 2015
Published Poverty Map

Figure 3: Machine Learning and Published Poverty Rate Maps of Thailand, 2015

Note: The first two images present the uncalibrated and calibrated machine learning-based poverty rate estimates in (approximately)
every 4 square kilometer grid, respectively. The third image shows the tambon-level poverty rates published by the National Statistical
Office of Thailand.
Source: Calculations and graphics generated by the study team.

BIBLIOGRAPHY

Asian Development Bank (ADB). 2020. Mapping Poverty through Data Integration and Artificial
Intelligence: A Special Supplement of the Key Indicators for Asia and the Pacific. Manila.

____ . 2021. Mapping the Spatial Distribution of Poverty Using Satellite Imagery in the Philippines. Manila.

____ . Forthcoming. Mapping the Spatial Distribution of Poverty Using Satellite Imagery in Thailand. Manila.

Database of Global Administrative Areas (GADM). GADM Data. https://gadm.org/data.html (accessed
20 February 2021).

Environmental Systems Research Institute (ESRI). 1998. ESRI Shapefile Technical Description: An ESRI
White Paper – July 1998. https://www.esri.com/Library/Whitepapers/Pdfs/Shapefile.pdf.

N. Gorelick et al. 2017. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote
Sensing of Environment. 202. pp 18–27.

R. J. Hijmans. 2020. raster: Geographic Data Analysis and Modeling. R Package, Version 3.4-5.
https://CRAN.R-project.org/package=raster.

Humanitarian Data Exchange (HDX). 2020. About the Humanitarian Data Exchange.
https://data.humdata.org/faq.

N. Jean et al. 2016. Combining Satellite Imagery and Machine Learning to Predict Poverty. Science. 353
(6301). pp 790–794.

K. Jordahl. 2014. GeoPandas: Python Tools for Geographic Data. https://github.com/Geopandas/Geopandas.

M. Kuhn. 2008. Building Predictive Models in R Using the Caret Package. Journal of Statistical Software.
28 (5). pp. 1–26.

O. P. Lamigueiro and R. Hijmans. 2020. rasterVis. R Package, Version 0.49. https://oscarperpinan.github.
io/rastervis/.

“Lesson 2 - Deep Learning for Coders (2020)”, Youtube video, 1:31:04, posted by Jeremy Howard on
22 August 2020. https://www.youtube.com/watch?v=BvHmRx14HQ8.

“Lesson 3 - Deep Learning for Coders (2020)”, Youtube video, 2:06:22, posted by Jeremy Howard on
22 August 2020. https://www.youtube.com/watch?v=5L3Ao5KuCC4.

https://gadm.org/data.html
https://CRAN.R-project.org/package=raster
https://data.humdata.org/faq
https://github.com/Geopandas/Geopandas
https://oscarperpinan.github.io/rastervis/
https://oscarperpinan.github.io/rastervis/
https://www.youtube.com/watch?v=BvHmRx14HQ8

Bibliography264 |

“Lesson 5: Deep Learning 2019 - Back propagation; Accelerated SGD; Neural net from scratch”,
Youtube video, 2:13:33, posted by Jeremy Howard on 22 August 2020. https://www.youtube.com/
watch?v=CJKnDu2dxOE.

W. McKinney. 2010. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in
Science Conference. 445. pp. 56–61.

J. O’Brien. 2020. gdalUtilities: Wrappers for ‘GDAL’ Utilities Executables. R Package, Version 1.1.1.
https://CRAN.R-project.org/package=gdalUtilities.

E. Pebesma. 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal. 10
(1). pp. 439–446.

J. Reback et al. 2020. Zenodo: pandas-dev/pandas: Pandas 1.0.3, Version 1.0.3. http://doi.org/10.5281/
zenodo.3715232.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. https://www.R-project.org/.

N. Ross. 2020. fasterize: Fast Polygon to Raster Conversion. R Package, Version 1.0.3. https://CRAN.R-
project.org/package=fasterize.

RStudio Team. 2020. RStudio: Integrated Development for R. RStudio. http://www.rstudio.com/.

L. Scrucca et al. 2016. mclust 5: Clustering, Classification and Density Estimation using Gaussian Finite
Mixture Models. The R Journal. 8 (1). pp. 289–317.

H. Wickham et al. 2019. Welcome to the tidyverse. Journal of Open Source Software. 4 (43). p. 1686.

https://www.youtube.com/watch?v=CJKnDu2dxOE
https://www.youtube.com/watch?v=CJKnDu2dxOE
https://CRAN.R-project.org/package=gdalUtilities
http://doi.org/10.5281/zenodo.3715232
http://doi.org/10.5281/zenodo.3715232
https://www.R-project.org/
https://CRAN.R-project.org/package=fasterize
https://CRAN.R-project.org/package=fasterize
http://www.rstudio.com/

A Guidebook on Mapping Poverty through Data Integration and Artificial Intelligence

The “leave no one behind” principle of the 2030 Agenda for Sustainable Development requires appropriate
indicators to be estimated for different segments of a country’s population. The Asian Development Bank,
in collaboration with the Philippine Statistics Authority, the National Statistical Office of Thailand, and the
World Data Lab, conducted a feasibility study that aimed to enhance the granularity, cost-effectiveness, and
compilation of high-quality poverty statistics in the Philippines and Thailand. This accompanying guide to the
Key Indicators for Asia and the Pacific 2020 special supplement is based on the study, capitalizing on satellite
imagery, geospatial data, and powerful machine-learning algorithms to augment conventional data collection
and sample survey techniques.

About the Asian Development Bank

ADB is committed to achieving a prosperous, inclusive, resilient, and sustainable Asia and the Pacific,
while sustaining its efforts to eradicate extreme poverty. Established in 1966, it is owned by 68 members
—49 from the region. Its main instruments for helping its developing member countries are policy dialogue,
loans, equity investments, guarantees, grants, and technical assistance.

ASIAN DEVELOPMENT BANK
6 ADB Avenue, Mandaluyong City
1550 Metro Manila, Philippines
www.adb.org

	Contents
	Table, Figures, and Box
	Foreword
	Abbreviations
	1 Introduction
	2 Hardware and Software Requirements and Setup
	3 Data Preparation
	4 Training of Convolutional Neural Network
	5 Convolutional Neural Network Model Feature Extraction
	6 Ridge Regression
	7 Rescaling of Poverty Estimates and Visualization
	Bibliography

