Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

5 result(s) found.

Sort by

You searched for

  • Tags / Keywords Problem definition, Prioritisation, Decision-making
    X
  • Tags / Keywords problem definition-research
    X
  • Keywords gender
    X
Abundance and Home ranges of Feral Cats in an Urban Conservancy where there is Supplemental Feeding: a case study from South Africa
Island and Ocean Ecosystems, BRB
Available Online

Downs, C.T.

,

Tennent, J.

2008
There is much debate surrounding the impact of feral cats (Felis catus) on wildlife. Conservancies areusually areas where indigenous flora and fauna are protected and aliens excluded or managed. The University of KwaZulu-Natal’s Howard College campus (HCC) is an urban conservancy containing feral cats that are presently not managed, and little is known about their ecology and behaviour. Consequently a feral cat population census was conducted, and their home range investigated. Estimates of the overall campus feral cat population numbers ranged between 23.4–40.0 cats/km2 with a minimum of 55 identified as resident. They were not randomly distributed in the study area, with spacing patterns being related to resource availability. Home range area and core distribution of eight radio-collared cats were determined over 13 months. Total home range areas were relatively small, with considerable overlap between them. Home ranges were clustered in areas with permanent feeding stations and these were also within the cats’ core ranges. Supplemental food resources appear to have a major influence on numbers, home and core range area, and behavior of cats. It is clear that cat densities grow to high levels with reliable and abundant food supply and only ad hoc sterilization. This has implications for their management in the HCC urban conservancy.
Special Issue Article: Tropical rat eradication. The next generation of rodent eradications: Innovative technologies and tools to improve species specificity and increase their feasibility on islands. Biological Conservation. Volume 185, May 2015
Island and Ocean Ecosystems, BRB
Available Online

Baxter. G.S.

,

Beek. J

,

Campbell K.J

,

Eason C.T

,

Glen A.S

,

Godwin. J

,

Gould. F

,

Holmes. N.D

,

Howald. G.R

,

Madden F.M

,

Ponder J.B

,

Threadgill. D.W

,

Wegmann. A.S

2015
Rodents remain one of the most widespread and damaging invasive alien species on islands globally. The current toolbox for insular rodent eradications is reliant on the application of sufficient anticoagulant toxicant into every potential rodent territory across an island. Despite significant advances in the use of these toxicants over recent decades, numerous situations remain where eradication is challenging or not yet feasible. These include islands with significant human populations, unreceptive stakeholder communities, co-occurrence of livestock and domestic animals, or vulnerability of native species. Developments in diverse branches of science, particularly the medical, pharmaceutical, invertebrate pest control, social science, technology and defense fields offer potential insights into the next generation of tools to eradicate rodents from islands. Horizon scanning is a structured process whereby current problems are assessed against potential future solutions. We undertook such an exercise to identify the most promising technologies, techniques and approaches that might be applied to rodent eradications from islands. We highlight a Rattus-specific toxicant, RNA interference as species-specific toxicants, rodenticide research, crab deterrent in baits, prophylactic treatment for protection of non-target species, transgenic rodents, virus vectored immunocontraception, drones, self-resetting traps and toxicant applicators, detection probability models and improved stakeholder community engagement methods. We present a brief description of each method, and discuss its application to rodent eradication on islands, knowledge gaps, challenges, whether it is incremental or transformative in nature and provide a potential timeline for availability. We outline how a combination of new tools may render previously intractable rodent eradication problems feasible.