Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

9 result(s) found.

Sort by

You searched for

  • Tags / Keywords scotland
    X
  • Tags / Keywords climate action
    X
Achieving large scale, long-term invasive American mink control in northern Scotland despite short term funding
Available Online

Horrill, J.

,

Lambin, X.

,

Raynor, R.

2019
The American mink (Neovison vison) has invaded most of the United Kingdom following escapes from furfarms over decades. Its escalating impact on riparian and coastal biodiversity, including seabirds and water voles, is well documented. Starting in north-east Scotland in 2004, long-term, multi-institution mink control efforts have harnessed the enthusiasm of volunteer conservationists to push back the mink invasion over a vast area. Rather than the outcome of a single project with secured long-term funding, this achievement resulted from four successive joined up projects each with short-term funding. The beginnings of the project (2004–2006), under the auspices of the north-east Scotland Biodiversity Partnership were small scale (30 km2) and centred upon a lowland remnant water vole meta-population. Mink control efforts were scaled-up to 6,000 km2 of mostly marginal mink habitat as part of the Cairngorms Water Vole Conservation Project (2006–2009) centred on the newly established Cairngorms National Park. The project, led by the University of Aberdeen, was funded by a charity, a UK Research council and Scottish Natural Heritage and involved the national park authority, and three local fisheries trusts. The approach was to deploy a “rolling carpet” of mink control based on the use of mink rafts operated by volunteers and that facilitated mink detection and removal. Substantial funding was then secured for a successor project, the Scottish Mink Initiative (2010–2014) involving, all previous partners plus 14 local fisheries trusts coordinated by the Rivers and Fisheries Trusts of Scotland. Mink were pushed back over a vast area (29,000 km2) and their spread in coastal areas of north-west Scotland was countered. After a period with minimal bridge funding, coordinated mink control efforts resumed, thanks to the newly funded Scottish Invasive Species Initiative (2017–2021) seeking to extend the approach used with mink to other riparian invasives. Mink remain scarce or absent and water voles are recovering spectacularly. Coordinated mink control delivered tangible conservation benefits and improved understanding of the socio-ecological system despite the challenges of short-term funding.
Scaling down (cliffs) to meet the challenge: the Shiants’ black rat eradication
Island and Ocean Ecosystems, BRB
Available Online

Bambini, L.

,

Bell, E.

,

Campbell, G.

,

Churchyard, T.

,

Douse, A.

,

Floyd, K.

,

Ibbotson, J.

,

Main, C.E.

,

Nicolson, T.

,

Reid, R.

,

Taylor, P.R.

,

Tayton, J.

,

Varnham, K.

,

Whittington, W.

2019
A successful ground-based eradication of black rats (Rattus rattus) was undertaken on the remote, uninhabited Shiant Isles of north-west Scotland over winter (14 October–28 March) 2015–16. The rat eradication was carried out as part of the Shiants Seabird Recovery Project, which aims to secure long-term breeding habitat for protected seabirds and to attract European storm petrels and Manx shearwaters to nest on the Shiants. Throughout the eradication operation, teams were stationed on two of the three main Shiant islands (Eilean an Tighe, Eilean Mhuire), with access to the third (Garbh Eilean) via a boulder causeway from Eilean an Tighe. Bait (Contrac® blocks containing the anticoagulant bromadiolone 0.005% w/w), was deployed in a grid of 1,183 bait stations covering all areas of the islands and sea stacks. Bait stations were set 50 m apart, with intervals reduced to 25 m in coastal areas of predicted high rat density. Difficult areas were accessed by boat and cliff s of ~120 m in height were accessed by abseiling down ropes made safe using either bolted anchors or ground stakes. The team of staff and volunteers worked through difficult conditions, deploying bait and monitoring intensively for any surviving rats using a combination of tools. The islands were declared rat free in March 2018. This ambitious and challenging project has greatly enhanced UK capacity in rodent eradications for the purposes of conservation.
Containment of invasive grey squirrels in Scotland: meeting the challenge
Island and Ocean Ecosystems, BRB
Available Online

Bryce, J.

,

Tonkin, M.

2019
Saving Scotland’s Red Squirrels (SSRS), launched in 2009, is a project to stop the decline of core populations of Scotland’s native red squirrel. It is a partnership project between Scottish Wildlife Trust, Scottish Natural Heritage, Forestry Commission Scotland, RSPB Scotland, Scottish Land & Estates and the Red Squirrel Survival Trust. The aim is the containment of the invasive non-native grey squirrel, which poses a dual threat to red squirrels through competition and disease transmission. Grey squirrels have replaced red squirrels over much of their former range in England, Wales, Ireland and central Scotland. SSRS controls grey squirrels at a landscape-scale in three strategically selected zones: in north-east Scotland, where the aim is eradication of an isolated grey squirrel population; coast to coast along the Highland Boundary Fault the aim is to prevent northwards incursion of grey squirrels into the Scottish Highlands and Argyll, where red squirrel is still the only species; and in southern Scotland, the aim is now to prevent replacement of priority red squirrel populations by focussing control in areas identifi ed as having the best prospects for the long-term maintenance of red squirrel populations. Control methods involve live cage-trapping combined with humane dispatch. The control network comprises SSRS and Forestry Commission controllers, private landowners supported by EU/government funding and a large number of individual volunteers. The work is dependent on wide public acceptance and active volunteer support. To date SSRS has been successful at signifi cantly reducing grey squirrel geographic range and occupancy in NE Scotland and as well as reducing the incidence of grey squirrels north of the ‘Highland Line’ to no more than the occasional occurrence. In southern Scotland grey squirrel control has contributed to the maintenance of red squirrel populations despite the continued spread of squirrelpox in grey squirrels. The major challenge now is sustaining the level of grey squirrel control needed to secure Scotland’s red squirrel populations in the long term. A new project phase started in 2017, focused on building community action networks until such a time as alternatives means of controlling grey squirrel numbers and disease impacts become widely available.
Lessons on effectiveness and long-term prevention from broad-scale control of invasive alien species in Scotland’s rivers and lochs
Island and Ocean Ecosystems, BRB
Available Online

Horrill, J.C.

,

Oliver, M.K.

,

Stubbs Partridge, J.

2019
Prior to 2008 there were few invasive alien species (IAS) initiatives operating in Scotland on a scale required for e?ective control. The establishment of the Biosecurity and Invasive Non-Native Species Programme by the Rivers and Fisheries Trusts of Scotland was the ?rst attempt to link local e?orts with national IAS strategy on scales appropriate to the e?ective control of target species. The programme worked with 26 local ?sheries trusts to produce biosecurity plans that covered over 90% of Scotland’s rivers and lochs. The programme implemented a range of prevention measures, including promoting awareness of invasive species issues and the need for biosecurity among water users. Projects were established for invasive plants on most major river systems, and for American mink (Neovison vison) in the north of Scotland. These projects involved public/private partnerships, using a mix of professional sta? and volunteers. Interactive data management systems were developed to manage input from a large number of individuals and to inform an adaptive management approach. These control projects demonstrated that it is feasible to reduce the size and density of target populations of invasive species across large geographic areas. The key to maintaining the momentum of this control e?ort in the future will be to demonstrate sustainable IAS management in the longer term. This challenge led to the formulation of the Scottish Invasive Species Initiative (SISI) whose overall aim is the development of a long-term, cost-e?ective strategy for IAS management throughout the north of Scotland. SISI will test strategies derived from experience and information from previous control projects. Important areas that the initiative will seek to address include de?ning outcomes, integrating IAS management into other management initiatives, and maintaining partnership interest and cohesiveness in a challenging funding environment.
Successful eradication of signal crayfish (Pacifastacus leniusculus) using a non-specific biocide in a small isolated water body in Scotland
Island and Ocean Ecosystems, BRB
Available Online

Ballantyne, L.

,

Baum, D.

,

Bean, C.W.

,

Long, J.

,

Whitaker, S.

2019
The North American signal cray?sh (Pacifastacus leniusculus) has been present in Scotland since at least 1995 and the species is now known to be present in a number of catchments. Once established, few opportunities for containment exist and eradication can often be impossible to achieve. However, in small, isolated water bodies, the application of a non-cray?sh-speci?c biocide has provided the opportunity to remove this species permanently. In July 2011, signal cray?sh were discovered in a ?ooded quarry pond at Ballachulish in the Scottish Highlands. This is an isolated site located ~100 km from the nearest known population and it is likely that the population was established as the result of a deliberate release of these animals 10 years previously. Experience gained from using the eradication technique at other sites in the UK led to the site being treated with a natural pyrethrum biocide (Pyblast®) in June 2012. Post treatment monitoring from 2012–2017 indicates that eradication has been successful. Monitoring of native species a?ected by the biocide suggests that both invertebrates and amphibians quickly recolonised the quarry pond. Eradication of cray?sh using biocide is only feasible in water bodies where the entire population of cray?sh can be exposed to a lethal dose and the impact on non-target species can be accepted. The technique is not appropriate for large, connected water bodies, although it may be possible to treat short stretches of canals where biocide exposure can be controlled and isolated populations of cray?sh can be e?ectively treated.
The potential detrimental impact of the New Zealand flatworm to Scottish islands
Island and Ocean Ecosystems, BRB
Available Online

Boag, B.

,

Neilson, R.

2019
The New Zealand ?atworm, Arthurdendyus triangulatus, is an alien invasive species in The British Isles and the Faroes. It was probably ?rst introduced after WWII and is an obligate predator of our native earthworms. It was initially considered a curiosity until observations in the 1990s in Northern Ireland found it could signi?cantly reduce earthworm numbers. In 1992, it was scheduled under the Countryside and Wildlife Act 1981 then transferred to the Wildlife and Natural Environment (Scotland) Act in 2011 which makes it an o?ence to knowingly distribute the ?atworm. A retrospective survey in Scotland showed that it was detected in botanic gardens, nurseries and garden centres in the 1960s but then spread to domestic gardens then ?nally to farms in the 1990s. Although the geographical distribution of A. triangulatus was initially con?ned to mainland Scotland it was subsequently found established on 30 Scottish Islands. Most of the islands are to the north and west of Scotland and have cool damp climates which are favoured by the New Zealand ?atworm. These islands also generally have relatively poor soils that support grassland farming systems. Evidence from both Northern Ireland and Scotland suggests anecic species of earthworm which occur predominantly in grassland, which help drainage and are a source of food for both animals and birds are at particular risk from the ?atworm. The detrimental impact of the ?atworm on soil processes and wildlife has yet to be quantitatively evaluated but unlike many other invasive species there is currently no known means of control. The precautionary principle must be therefore applied wherever possible and every opportunity taken to stop its further spread.