Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Available Online

Tags / Keywords

Available Online

10 result(s) found.

Sort by

You searched for

  • Tags / Keywords black rats
    X
Maximising conservation impact by prioritising islands for biosecurity
Available Online

Bambini, L.

,

Dawson, J.

,

Havery, S.

,

John, L.

,

Oppel, S.

,

Radford, E.

,

Varnham, K.

2019
Invasive alien species are one of the primary threats to native biodiversity on islands worldwide, and their expansion continues due to global trade and travel. Preventing the arrival and establishment of highly successful invasive species through rigorous biosecurity is known to be more economic than the removal of these species once they have established. However, many islands around the world lack biosecurity regulations or practical measures and establishing biosecurity will require social and financial investments. Guiding these investments towards islands where native biodiversity is at highest risk from potential invasions is of strategic importance to maximise conservation benefit with limited resources. Here we implement an established prioritisation approach, previously used to identify which islands will have the greatest conservation gains from the eradication of invasive species, to identify which islands would benefit the most from establishing or improving biosecurity. We demonstrate this approach for 318 islands in the Caribbean UK Overseas Territories and Bermuda where we considered all threatened native terrestrial vertebrates that are vulnerable to the most harmful invasive vertebrates (black and brown rats, cats, small Indian mongoose, green iguana). The approach calculates the increase in conservation threat score resulting from anticipated negative effects of potential invaders on native biodiversity, and highlighted Sombrero (Anguilla) and Cayman Brac (Cayman Islands) as important islands where threatened reptile species would likely be eliminated if rats, feral cats or mongoose invaded. Feasibility and cost implications should now be investigated more closely on the highlighted islands. The prioritisation presented here can be expanded to more islands and more invasive/native taxa (herbivores, plants and invertebrates), but requires a classification of the severity of potential impacts between invasive and native species for which currently little information exists. Besides highlighting opportunities for biosecurity, this approach also highlights where knowledge gaps about population sizes of and threats to reptiles with restricted ranges exist.
Predation pressures on sooty terns by cats, rats and common mynas on Ascension Island in the South Atlantic
Available Online

Dickey, R.C.

,

Hughes, B.J.

,

Reynolds, S.J.

2019
Despite the presence of invasive black rats (Rattus rattus), common mynas (Acridotheres tristis), and feral domestic cats (Felis catus), sooty terns (Onychoprion fuscatus) breed in large numbers on Ascension Island in the tropical South Atlantic Ocean. These introduced predators impact the terns by destroying eggs or interrupting incubation (mynas), eating eggs (mynas and rats), eating chicks (rats and cats), or eating adults (cats). Between 1990 and 2015, 26 censuses of sooty terns and five of mynas were completed and myna predation was monitored on 10 occasions. Rat relative abundance indices were determined through trapping around the tern colonies and rat predation was monitored by counting chick carcasses. Cat predation was quantified by recording freshly killed terns. Prior to their eradication in 2003, cats had the greatest impact on sooty terns and were depredating 5,800 adults and 3,600 near-fledging chicks (equivalent to the loss of 71,000 eggs) each breeding season. We estimated that 26,000 sooty tern eggs (13% of all those laid) were depredated by approximately 1,000 mynas. Rats were not known to depredate sooty terns prior to cat eradication but in 2005, 131 of 596 ringed (monitored) chicks (22%) were depredated by rats. In 2009 chick carcass density was 0.16 per m2. Predation by rats hugely increased in the absence of cats and was the equivalent of 69,000 eggs. Care is needed when applying our findings to seabirds globally. The scarcity of alternative food sources and seasonally high density of easily available prey in the sooty tern colony may have magnified predation by cats, rats and mynas.
Long term rodent control in Rdum tal-Madonna yelkouan shearwater colony
Available Online

Cabello, J.S. Santiago

,

Lago, P.

,

Varnham, K.

2019
Rodent predation on eggs and chicks is one of the main threats to procellariiform species in the Mediterranean, where the black rat (Rattus rattus) and brown rat (R. norvegicus) have been present on many islands for centuries. The yelkouan shearwater (Puffinus yelkouan) is an endemic Mediterranean seabird species classified as vulnerable. Malta holds up to 10% of the global population; the largest colony, Rdum tal-Madonna (RM), protected as a Natura 2000 site, hosts around 500 breeding pairs. This colony has been monitored since its discovery in 1969. A very low reproductive success due to rat predation was noticed in the late 1990s to early 2000s. In 2007 a seasonal rodent control programme was established during the breeding season of yelkouan shearwater to reduce rat predation on eggs and chicks. Rodent control took place between 2007 and 2010 and was reviewed and continued from 2012 to 2017. Breeding success since 2007 has been higher than 80%. In two other colonies with rat presence and where rodent control did not take place, the breeding success in 2016 and 2017 was substantially lower than in the colony with the rodent control programme. The European storm-petrel (Hydrobates pelagicus melitensis) only breeds in rat-free areas like remote sea caves or islets around the Maltese islands. In 2014, the first breeding attempt by European storm-petrel was recorded on the Maltese mainland at RM with a chick fledging successfully for the first time in 2016. The ongoing LIFE Arcipelagu Garnija project is assessing rat predation in all Maltese yelkouan shearwater colonies in order to establish predator control in the most important yelkouan shearwater breeding sites in 2018.
Applying lessons learnt from tropical rodent eradications: a second attempt to remove invasive rats from Desecheo National Wildlife Refuge, Puerto Rico
Available Online

Figuerola-Hernandez, C.E.

,

Griffiths, R.

,

Herrera-Giraldo, J.L.

,

Howald, G.R.

,

Keitt, B.

,

Silander, S.

,

Swinnerton, K.

,

Will, D.J.

2019
The introduction of invasive rats, goats, and rhesus macaques to Desecheo National Wildlife Refuge, Puerto Rico led to the extirpation of regionally signifi cant seabird colonies and negatively impacted plant and endemic reptile species. In 2012, following the successful removal of goats and macaques from Desecheo, an attempt to remove black rats using aerially broadcast rodenticide and bait stations was unsuccessful. A review of the operation suggested that the most likely contributors to the failure were: unusually high availability of alternative foods resulting from higher than average rainfall, and insufficient bait availability. In 2016, a second, successful attempt to remove rats was conducted that incorporated best practice guidelines developed during a workshop that focused on addressing the higher failure rate observed when removing rats from tropical islands. Project partners developed a decision-making process to assess the risks to success posed by environmental conditions and established go/no-go decision points leading up to implementation. Observed environmental conditions appeared suitable, and the operation was completed using aerial broadcast of bait in two applications with a target sowing rate of 34 kg/ha separated by 22 days. Application rates achieved on the ground were stratified such that anticipated high risk areas in the cliff s and valleys received additional bait. We consider the following to be key to the success of the second attempt: 1) monitoring environmental conditions prior to the operation, and proceeding only if conditions were conducive to success, 2) reinterpretation of bait availability data using the lower 99% confidence interval to inform application rates and ensure sufficient coverage across the entire island, 3) treating the two applications as independent, 4) increasing the interval between applications, 5) seeking regulatory approval to give the operational team sufficient flexibility to ensure a minimum application rate at every point on the island, and 6) being responsive to operational monitoring and making any necessary adjustments.
The eradication of black rats (Rattus rattus) from Dog Island, Anguilla, using ground-based techniques
Available Online

Bell, E.

,

Connor, R.

,

Daltry, J.

,

Mukhida, F.

,

Varnham, K.

2019
Rat eradication techniques developed in New Zealand are a proven method for removing invasive rodents from islands worldwide. This technology moved rapidly from ground-based bait station operations to aerial application of rodenticides. Rat eradications on tropical islands using similar methods, have not always been as successful as those in temperate regions. As most previous eradications in the Caribbean have been on islands smaller than 50 ha, the eradication of black rats (Rattus rattus) from 207 ha Dog Island was a significant increase in size. Reptile and seabird populations on Dog Island had been in decline for a number of years and black rats were identified as the most likely factor. Following the feasibility study in 2007, the Dog Island Recovery Project was launched in 2011. This was a multiple-year project incorporating a ground-based eradication with establishment of biosecurity procedures to prevent reinvasion, alongside long-term monitoring of native species. Bait stations with cereal-based wax blocks containing brodifacoum at 0.005% w/w were established on a 30–50 m grid over the island. Interference with bait stations by non-target invertebrates, particularly crabs, was high and bait stations required moving or elevating to avoid this. However, there was no evidence of any non-target animals being killed or injured by the bait. Eradication success was confirmed in 2014.
Eradicating black rats from the Chagos - working towards the whole archipelago
Available Online

Carr, P.

,

Harper,G.A.

,

Pitman, H.

2019
The Chagos Archipelago comprises some 58 islands covering 5,000 ha in the centre of the Indian Ocean. Black rats (Rattus rattus) were introduced about 230 years ago and have likely had a severe impact on the native terrestrial fauna, which is dominated by seabirds and land crabs. Most of the archipelago’s terrestrial land mass is vegetated with old coconut plantations, with over 75% of the native forest cleared for coconut from 26 of the largest islands. Likely as a result of this colonisation and clearance, at least 30 islands have rats present (95.3% of the Chagos landmass) along with feral cats (Felis catus) on 62%, which suppresses the recovery of native fauna and fl ora. Efforts at rat eradication include the failed attempt on Eagle Island (252 ha) in the northern Chagos Archipelago in 2006 and the recent success of a ground-based eradication on Île Vache Marine in 2014, where two applications of brodifacoum poison were hand-spread at a rate of 18 kg/ha. Two islets on the nearby Salomon atoll were also cleared of black rats during the same operation with single bait applications. The 2014 operation was successful on what are regarded as difficult islands for rat eradication, being ‘wet’ tropical islands with land crabs and coconut plantations present, and has engendered confidence to proceed with additional rat eradications on other northern Chagos islands.
Black rat eradication on Italian islands: planning forward by looking backward
Available Online

Baccetti, N.

,

Capizzi, D.

,

Gotti, C.

,

Pelliccioni, E. Raganella

,

Petrassi, F.

,

Sozio, G.

,

Sposimo, P.

2019
Since 1999, the black rat (Rattus rattus) has been eradicated from 14 Italian islands, and eradication is ongoing on a further five islands. Most projects were funded by the European Union (EU) Life Programme. Over the years, eradication techniques have been improved and adapted to different situations, including aerial bait distribution on islands with large inaccessible areas, which otherwise would have relied on a manual bait distribution. A priority list of eradications on islands, which was compiled ten years ago, has been met to a large extent, as rats have been successfully eradicated from many islands of great importance to breeding seabirds. Despite some cases of re-invasion occurring in early projects, advances in biosecurity measures have allowed for eradications on islands where this was previously considered unfeasible due to a high risk of re-invasion. This paper reports on black rat eradication work performed on Italian Mediterranean islands with small villages. We show biodiversity benefits of these programmes, but also qualitatively address socio-economic and health impacts on local communities. Eradication projects have faced new obstacles, due to recent changes in legislation which complicated the application of rodenticides and made it very difficult to get permission for aerial distribution of bait on some of the priority islands.
Comprehensive Desk-top Review of Biodiversity, Conservation and Invasive Species Information for the Kingdom of Tonga
Island and Ocean Ecosystems
Available Online

Pagad. Shyama

2013
Situated between Fiji to the west and Samoa to the northeast, the Kingdom of Tonga (referred to as Tonga) is comprised of 171 scattered islands of which less than 50 are inhabited. The islands are mainly composed of limestone formed from uplifted coral. Current critical environmental concerns have arisen due to deforestation; damage to coral reefs and the introduction and spread of invasive alien species. Anthropogenic pressure has resulted in extensive modification of all ecosystems on the limestone islands of this group. Only uninhabited and steep volcanic islands still support large tracts of forest.