Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

20 result(s) found.

Sort by

You searched for

  • Tags / Keywords global
    X
  • Tags / Keywords greenhouse frog
    X
Invasive species removals and scale – contrasting island and mainland experience
BRB
Available Online

Adriaens, T.

,

Booy, O.

,

Mill, A.

,

Robertson, P.

,

Roy, S.

,

Shirley, M.

,

Tatayah, V.

,

Ward, A.

2019
Recent years have seen large increases in the number and size of successful invasive species eradications from islands. There is also a long history of large scale removals on larger land-masses. These programmes for mammals and terrestrial plants follow the same cost-area relationship although spanning 10 orders of magnitude in scale. Eradication can be readily defined in island situations but can be more complex on larger land-masses where uncertainties defining the extent of a population, multiple population centres on the same land-mass and ongoing risks of immigration are commonplace. The term ‘complete removal’ is proposed to describe removal from an area with ongoing eff ort to maintain the area as clear, as features in many larger scale mainland programmes. Examples of complete removal to a boundary, in patches and in habitat islands are discussed. While island eradications continue to grow in scale, new legislation such as the lists of Species of European Union Concern will also drive increasing management on larger land-masses. However, these lists include large numbers of species that are already widespread. Methods are needed to prioritise species to reflect both the risks posed and the feasibility of management, including the effects of scale on cost and effectiveness.
Spatial dynamics of invasion and distribution of alien frogs in a biodiversity hotspot archipelago
Island and Ocean Ecosystems, BRB
Available Online

Diesmos, A.C.

,

Diesmos, M.L.L.

,

Pili, A.N.

,

Supsup, C.E.

,

Sy, E.Y.

2019
The endemic-rich amphibian fauna of the Philippine Archipelago (ca. 350,000 km2) includes six alien frogs: the American bullfrog (Lithobates catesbeianus), Asiatic painted toad (Kaloula pulchra), cane toad (Rhinella marina), Chinese bullfrog (Hoplobatrachus rugulosus), green paddy frog (Hylarana erythraea), and greenhouse frog (Eleutherodactylus planirostris). The chronological history of their invasion across the Philippines was reconstructed based on historical and geographic data. Subsequently, we estimated their current and potential distribution through species distribution modelling and Gaussian kernel density smoothing species distribution data. Seven known and potential pathways of introduction into and spread throughout the Philippines were identifi ed, namely, intentional introduction as a (1) biocontrol agent and (2) food source; contamination of (3) agriculture trade, (4) aquaculture trade, and (5) ornamental plant trade; (6) stowaway of cargo; and (7) through the exotic pet trade. Spatio-temporal patterns of distribution showed a stratifi ed diff usion process of spread wherein human-mediated jum dispersal is the primary mode followed by diff usion dispersal. The status of the American bullfrog in the Philippines is unresolved, whether it has successfully established. Meanwhile, the other five alien frogs have established populations in the wild, typically the dominant species in both artificial and disturbed habitats, and are continuously spreading throughout the Philippines. Estimates of current and potential distribution indicate that none of the alien frogs has realised its full potential distribution and that the cane toad is the most widespread, occurring in almost all major islands of the Philippines (ca. 85%), while the greenhouse frog is the least distributed, being found so far in eight provinces and on seven islands. In light of these findings, we provide policy and management recommendations for responding to current and future alien frog invasions.
Eradication and control programmes for invasive mynas (Acridotheres spp.) and bulbuls (Pycnonotus spp.): defining best practice in managing invasive bird populations on oceanic islands
Island and Ocean Ecosystems, BRB
Available Online

Reynolds, S.J.

,

Saavedra Cruz, S.

2019
Invasive plants and animals inflict much damage on native species and this is particularly the case on isolated oceanic islands with high degrees of endemism. Such islands commonly are important refugia for species of high conservation value. Some of the most pervasive and potent of invasive animal species are birds of the myna (Acridotheres) and bulbul (Pycnonotus) genera that historically were introduced to isolated islands as biological control agents for the management of insect pest species that can cause considerable economic damage to agricultural crops and wider ecosystems. In this paper we consider a number of ‘successful’ eradication and control programmes targeting mynas and bulbuls. We review the locations and taxa where 17 such programmes took place and report that the common myna (Acridotheres tristis) has been the most heavily targeted species in eradication eff orts followed by the red-whiskered bulbul (Pycnonotus jocosus). Common mynas were also at the focus of control programmes as were jungle mynas (Acridotheres fuscus) and red-vented bulbuls (Pycnonotus cafer). By far the most favoured method of eradication and control was trapping whereas mist-netting was employed rarely. We discuss ‘best practice’ in planning and executing such eradication and control programmes on oceanic islands so as to maximise their benefits to local human communities. We outline measures that must be adopted pre-, during and post-intervention in both programme types. They include adequate resourcing, local engagement and the integration of both traditional ecological knowledge and established conservation theory.
Eradication of invasive alien crayfish: past experiences and further possibilities
Island and Ocean Ecosystems, BRB
Available Online

Sandodden, R.

2019
The EU regulation 1143/2014 “On the prevention and management of the introduction and spread of invasive alien species” entered into force on 1 January 2015. On 13 July 2016, the EU list of invasive alien species that require action was adopted. The list includes ?ve di?erent cray?sh species. Member states will be required to take measures for early detection and rapid eradication of these species. Except for some eradications performed in the United Kingdom and Norway, there has not been much e?ort put into eradication of invasive cray?sh species throughout Europe. The reasons for this are probably complex and di?er between member states. Are the main reasons legislative constraints, ability to eradicate or lack of knowledge and experience? Is eradication of alien cray?sh possible and desirable, and what is left to save in Europe? Focus could be put into identifying or creating island populations of special concern and preserve them for the future survival of European native cray?sh populations. Eradication measures should be considered as an option in this work. What are the experiences from completed eradication e?orts in Europe? Two cray?sh eradications have been performed in Norway, and both have been successful. The eradications were performed in locations with several ponds and small streams and performed using the synthetic pyrethroid-based pharmaceutical BETAMAX VET®. Both legislative and funding constraints seem less prominent as successful eradications have been con?rmed. Time will show if this trend will spread throughout Europe.