Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

21 result(s) found.

Sort by

You searched for

  • Tags / Keywords global
    X
  • Tags / Keywords islands eradication
    X
Invasive species removals and scale – contrasting island and mainland experience
BRB
Available Online

Adriaens, T.

,

Booy, O.

,

Mill, A.

,

Robertson, P.

,

Roy, S.

,

Shirley, M.

,

Tatayah, V.

,

Ward, A.

2019
Recent years have seen large increases in the number and size of successful invasive species eradications from islands. There is also a long history of large scale removals on larger land-masses. These programmes for mammals and terrestrial plants follow the same cost-area relationship although spanning 10 orders of magnitude in scale. Eradication can be readily defined in island situations but can be more complex on larger land-masses where uncertainties defining the extent of a population, multiple population centres on the same land-mass and ongoing risks of immigration are commonplace. The term ‘complete removal’ is proposed to describe removal from an area with ongoing eff ort to maintain the area as clear, as features in many larger scale mainland programmes. Examples of complete removal to a boundary, in patches and in habitat islands are discussed. While island eradications continue to grow in scale, new legislation such as the lists of Species of European Union Concern will also drive increasing management on larger land-masses. However, these lists include large numbers of species that are already widespread. Methods are needed to prioritise species to reflect both the risks posed and the feasibility of management, including the effects of scale on cost and effectiveness.
‘Island’ eradication within large landscapes: the remove and protect model
Available Online

Bell, P.

,

Mulgan, N.

,

Nathan, H.

2019
New Zealand has been the world leader in the eradication of invasive mammalian predators from offshore islands. Today, the focus for invasive predator management is shifting to larger landscapes; big inhabited islands or the mainland itself. The most cost-effective approach in the long term will be to eradicate the predators from those areas, ensuring permanent freedom for vulnerable and threatened native biodiversity to recover or be reintroduced. Island eradication technologies cannot always be employed on the mainland (e.g. aerial brodifacoum), so a new approach is required. Zero Invasive Predators Ltd (ZIP) is a not-for-profit research and development entity, established in New Zealand through public, private, and philanthropic funding, to pioneer a novel predator management model for landscape scale application – a model known as ‘Remove and Protect’. ZIP is developing the tools and technologies to both enable the complete removal of rats, possums, and stoats from large areas of mainland New Zealand, and then protect those areas from reinvasion. Among the innovations being tested is the ‘virtual barrier’, essentially converting large peninsulas into islands without the use of traditional predator fencing (which is expensive and impractical in some terrain); and a ‘minimal infrastructure’ detection system for automated early warning of any predator incursions. We review the transformative predator management model ZIP is developing and how it could help to pave the way towards large-scale predator-free landscapes.
Eradication and control programmes for invasive mynas (Acridotheres spp.) and bulbuls (Pycnonotus spp.): defining best practice in managing invasive bird populations on oceanic islands
Island and Ocean Ecosystems, BRB
Available Online

Reynolds, S.J.

,

Saavedra Cruz, S.

2019
Invasive plants and animals inflict much damage on native species and this is particularly the case on isolated oceanic islands with high degrees of endemism. Such islands commonly are important refugia for species of high conservation value. Some of the most pervasive and potent of invasive animal species are birds of the myna (Acridotheres) and bulbul (Pycnonotus) genera that historically were introduced to isolated islands as biological control agents for the management of insect pest species that can cause considerable economic damage to agricultural crops and wider ecosystems. In this paper we consider a number of ‘successful’ eradication and control programmes targeting mynas and bulbuls. We review the locations and taxa where 17 such programmes took place and report that the common myna (Acridotheres tristis) has been the most heavily targeted species in eradication eff orts followed by the red-whiskered bulbul (Pycnonotus jocosus). Common mynas were also at the focus of control programmes as were jungle mynas (Acridotheres fuscus) and red-vented bulbuls (Pycnonotus cafer). By far the most favoured method of eradication and control was trapping whereas mist-netting was employed rarely. We discuss ‘best practice’ in planning and executing such eradication and control programmes on oceanic islands so as to maximise their benefits to local human communities. We outline measures that must be adopted pre-, during and post-intervention in both programme types. They include adequate resourcing, local engagement and the integration of both traditional ecological knowledge and established conservation theory.
Eradication of invasive alien crayfish: past experiences and further possibilities
Island and Ocean Ecosystems, BRB
Available Online

Sandodden, R.

2019
The EU regulation 1143/2014 “On the prevention and management of the introduction and spread of invasive alien species” entered into force on 1 January 2015. On 13 July 2016, the EU list of invasive alien species that require action was adopted. The list includes ?ve di?erent cray?sh species. Member states will be required to take measures for early detection and rapid eradication of these species. Except for some eradications performed in the United Kingdom and Norway, there has not been much e?ort put into eradication of invasive cray?sh species throughout Europe. The reasons for this are probably complex and di?er between member states. Are the main reasons legislative constraints, ability to eradicate or lack of knowledge and experience? Is eradication of alien cray?sh possible and desirable, and what is left to save in Europe? Focus could be put into identifying or creating island populations of special concern and preserve them for the future survival of European native cray?sh populations. Eradication measures should be considered as an option in this work. What are the experiences from completed eradication e?orts in Europe? Two cray?sh eradications have been performed in Norway, and both have been successful. The eradications were performed in locations with several ponds and small streams and performed using the synthetic pyrethroid-based pharmaceutical BETAMAX VET®. Both legislative and funding constraints seem less prominent as successful eradications have been con?rmed. Time will show if this trend will spread throughout Europe.