Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Publication Year

Material Type

Available Online

Tags / Keywords

Publication Year

Material Type

Available Online

2 result(s) found.

Sort by

You searched for

  • Tags / Keywords fly
    X
  • Tags / Keywords problem defition-baseline
    X
Management of an invasive avian parasitic fly in the Galapagos Islands: is biological control a viable option?
Island and Ocean Ecosystems, BRB
Available Online
2019
The bird-parasitic ?y, Philornis downsi, was ?rst recorded in the Galápagos Islands in 1964 where it likely invaded from mainland Ecuador. This muscid ?y is now the leading cause of recent declines in endemic landbird populations as its larvae feed on the nestlings of at least 19 bird species in the Galápagos, including many species of Darwin’s ?nches. As yet, no long-term control method has been implemented for P. downsi, but importation (also known as classical) biological control may be a viable option. Due to historically high-pro?le examples of biological control agents attacking non-target species, some consider biological control to be too risky to be compatible with conservation aims. However, since biosafety practices were implemented beginning in the 1990s, these risks have been drastically reduced, and biological control is now an important tool for suppressing invasive species that are di?cult to control using other means. We investigated the safety of a potential biological control agent, the parasitoid wasp, Conura annulifera, that attacks P. downsi in its native range. Here we summarise the results of a series of ?eld, laboratory and comparative studies on C. annulifera (methods and results are not reported here) and outline future directions. We used a ?eld experimental paradigm involving nest boxes baited with non-target hosts, and quarantine laboratory no-choice trials in which non-target hosts were exposed to C. annulifera. Our work to-date suggests that C. annulifera is restricted to attacking species within the genus Philornis. Furthermore, a phylogenetically controlled comparative study suggests that C. annulifera is evolutionarily constrained in its host range. These results lead us to conclude that C. annulifera demonstrates promise as an ecologically safe agent for the long-term biological control of P. downsi. Studies will now focus on an evaluation of risks to endemic and native species in the Galápagos.
An overview of introduced predator management in inhabited landscapes
BRB
Available Online

Russell, James C.

,

Stanley, Margaret C.

2017
Predators play a critical role in ecosystems; however, when overly abundant, they can disrupt natural processes and cause extinctions of species. In particular, oceanic islands have endured many impacts of introduced mammalian predators. Whereas knowledge and management of introduced mammalian predators on islands is well advanced in natural landscapes, in inhabited landscapes, spanning rural and urban environments, comparatively less is known. We summarise key issues from the natural and social sciences in the management of introduced mammalian predators in inhabited landscapes of Aotearoa–New Zealand. We describe the shift in focus over the past few decades from management of introduced mammalian herbivores to predators in rural environments, and the growth in management of introduced mammalian predators in urban environments, both seeking to emulate conservation gains made in forested landscapes. We discuss the circumstances around companion animal management at the interface of the natural and social sciences. We summarise surveys of attitudes towards introduced mammalian predators, the role of biodiversity comanagement between Ma¯ori and Pakeha, and the importance of also considering non-biodiversity benefits from introduced predator management. We describe the rise of community predator control and large landscape projects aspiring for a ‘Predator Free New Zealand’, and how such an aspiration must be concurrent with habitat restoration. We make recommendations for further research on the basic population biology of predators in inhabited landscapes, and more long-term studies. Such studies should be integrated with examination of the motivations for predator management, as well as the biodiversity and social outcomes of such management. We conclude by remarking that introduced predator management is only one component of a robust national strategy for conservation of native biodiversity in New Zealand.