Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Publication Year

Available Online

Tags / Keywords

Publication Year

Available Online

4 result(s) found.

Sort by

You searched for

  • Tags / Keywords mile-a-minute weed
    X
  • Tags / Keywords problem definiton-baseline
    X
The legacy of Big South Cape: rat irruption to rat eradication
BRB
Available Online

Bell, Brian D.

,

Bell, Elizabeth A.

,

Merton, Don V.

Big South Cape Island (Taukihepa) is a 1040 ha island, 1.5 km from the southwest coast of Stewart Island/Rakiura, New Zealand. This island was rat-free until the incursion of ship rats (Rattus rattus) in, or shortly before, 1963, suspected to have been accidentally introduced via local fishing boats that moored at the island with ropes to the shore, and were used to transport the mutton birders to the island. This incursion was reported by the muttonbirders – local Iwi who harvest the young of titi (sooty shearwater, Puffinus riseus) – to the then New Zealand Wildlife Service (via the New Zealand Department of Lands and Survey). Investigation into the reports found ship rats had reached the island and had decimated the local land bird populations. Brian Bell and Don Merton attempted some of the first translocations of South Island saddleback (Philesturnus c. carunculatus), Stewart Island snipe (Coenocorypha aucklandica iredalei) and Stead’s bush wren (Xenicus longipes variabilis) with only the saddleback being successful. Extinctions of the snipe, wren and greater short-tailed bat (Mystacina robusta) were recorded. This was the first time rats were definitively recognised as the cause of extinction of native land birds and directed further debate into the impacts of rats and how to deal with them.
Potential impact of climate change on the distribution of six invasive alien plants in Nepal.
BRB
Available Online

Shrestha Uttam Babu

The biological invasions have been increasing at multiple spatial scales and the management of invasive alien species is becoming more challenging due to confounding effects of climate change on the distribution of those species. Identification of climatically suitable areas for invasive alien species and their range under future climate change scenarios areessentialfor long-term management planningofthesespecies. Using occurrence data of six of the most problematic invasive alien plants (IAPs) of Nepal (Ageratum houstonianum Mill., Chromolaenaodorata (L.) R.M. King & H. Rob., Hyptis suaveolens (L.) Poit., Lantana camara L., Mikania micrantha Kunth, and Parthenium hysterophorus L.), we have predicted their climatically suitable areas across the country under the current and two future climate change scenarios (RCP 4.5 scenarios for 2050 and 2070). We have developed an ensemble of eight different species distribution modelling approaches to predict the location of climatically suitable areas. Under the current climatic condition, P. hysterophorus had the highest suitable area (18% of the total country’s area) while it was the lowest for M. micrantha (12%). A predicted increase in the currently suitable areas ranges from 3% (M. micrantha) to 70% (A. houstonianum) with the mean value for all six species being 29% under the future climate change scenario for 2050. For four species (A. houstonianum, C. odorata, H.suaveolens and L. camara), additional areas at elevations higher than the current distribution will provide suitable habitat under the projected future climate. In conclusion, all six IAPs assessed are likely to invade additional areas in future due to climate change and these scenarios need to be considered while planning for IAPs management as well as climate change adaptation.