Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

5 result(s) found.

Sort by

You searched for

  • Tags / Keywords mikania micrantha
    X
  • Tags / Keywords antipodes parakeet
    X
Eradication of mice from Antipodes Island, New Zealand
Island and Ocean Ecosystems, BRB
Available Online

Elliott, G.

,

Greene, T.

,

Horn, S.

2019
In winter 2016, the New Zealand Department of Conservation (DOC) eradicated mice (Mus musculus) from the Antipodes Islands located at 49°S 178°E, 760 km south-east of New Zealand’s South Island. Mice were the only mammalian pest species present. They have extensively impacted the abundance and survival of invertebrates, with likely secondary impacts on endemic terrestrial birds and nesting seabird fauna. Public-private partnerships with DOC instigated the project and provided essential financial support. Baseline scientific data for operational planning and outcome monitoring were collected by a research expedition in July 2013 and project planning began in 2014. At the time of writing, this is the largest eradication of mice undertaken where mice are the sole mammalian pest species. Logistical challenges were complicated by a broad range of regulatory obligations. The expedition-style project used a ship to deliver a team and equipment to Antipodes Island where they established camp and remained until the completion of baiting. Bait spread was completed incrementally as weather allowed, comprehensively covering the islands in two separate treatments between 18 June 2016 and 12 July 2016. The last sign of mice was detected 20 days after the fi rst application of bait and the eradication of mice was confirmed by monitoring in late summer 2018. Public engagement was achieved with regular operational updates across multiple platforms and positive media coverage. Non-toxic bait trials accurately predicted some by-kill of pipit (Anthus novaeseelandiae steindachneri) but did not anticipate poisoning of some Antipodes parakeet (Cyanoramphus unicolor) and Reischek’s parakeet (Cyanoramphus hochstetteri). Known pest-free islands were not baited, providing refuge for land birds to mitigate the risk. Fledging success of Antipodean albatross (Diomedea antipodensis antipodensis) chicks was not impacted by the operation and those species that were affected had recovered by summer 2018.
Potential impact of climate change on the distribution of six invasive alien plants in Nepal.
BRB
Available Online

Shrestha Uttam Babu

The biological invasions have been increasing at multiple spatial scales and the management of invasive alien species is becoming more challenging due to confounding effects of climate change on the distribution of those species. Identification of climatically suitable areas for invasive alien species and their range under future climate change scenarios areessentialfor long-term management planningofthesespecies. Using occurrence data of six of the most problematic invasive alien plants (IAPs) of Nepal (Ageratum houstonianum Mill., Chromolaenaodorata (L.) R.M. King & H. Rob., Hyptis suaveolens (L.) Poit., Lantana camara L., Mikania micrantha Kunth, and Parthenium hysterophorus L.), we have predicted their climatically suitable areas across the country under the current and two future climate change scenarios (RCP 4.5 scenarios for 2050 and 2070). We have developed an ensemble of eight different species distribution modelling approaches to predict the location of climatically suitable areas. Under the current climatic condition, P. hysterophorus had the highest suitable area (18% of the total country’s area) while it was the lowest for M. micrantha (12%). A predicted increase in the currently suitable areas ranges from 3% (M. micrantha) to 70% (A. houstonianum) with the mean value for all six species being 29% under the future climate change scenario for 2050. For four species (A. houstonianum, C. odorata, H.suaveolens and L. camara), additional areas at elevations higher than the current distribution will provide suitable habitat under the projected future climate. In conclusion, all six IAPs assessed are likely to invade additional areas in future due to climate change and these scenarios need to be considered while planning for IAPs management as well as climate change adaptation.