Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

21 result(s) found.

Sort by

You searched for

  • Tags / Keywords pigs
    X
  • Tags / Keywords coastal fisheries
    X
Archipelago-wide island restoration in the Galapagos Islands: Reducing costs of invaisve mammal eradication programs and reinvasion risk
BRB
Available Online

Campbell, Karl J.

,

Carrion, Victor

,

Cruz, Felipe

,

Donian, C. Josh

,

Lavoie, Christian

2011
Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of society's most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the world's largest island restoration effort to date, removed > 140,000 goats from > 500,000 ha for a cost of US$10.5 million. Leveraging the capacity built during Project Isabela, and given that goat reintroductions have been common over the past decade, we implemented an archipelago-wide goat eradication strategy. Feral goats remain on three islands in the archipelago, and removal efforts are underway. Efforts on the Galápagos Islands demonstrate that for some species, island size is no longer the limiting factor with respect to eradication. Rather, bureaucratic processes, financing, political will, and stakeholder approval appear to be the new challenges. Eradication efforts have delivered a suite of biodiversity benefits that are in the process of revealing themselves. The costs of rectifying intentional reintroductions are high in terms of financial and human resources. Reducing the archipelago-wide goat density to low levels is a technical approach to reducing reintroduction risk in the short-term, and is being complemented with a longer-term social approach focused on education and governance.
Feral hog disturbance alters carbon dynamics in Southeastern US salt marshes
Island and Ocean Ecosystems, BRB
Available Online

Angelini, Christine

,

Persico, Emily P.

,

Sharp, Sean J

2017
Disturbances that remove primary producers and alter substrate chemistry commonly influence ecosystem carbon dynamics. Because coastal wetlands are especially effective in sequestering carbon, quantifying how disturbances may alter their ability to perform this climate-regulating function is important for assessing their carbon storage potential. Here, we quantified soil respiration, litter decomposition, and soil organic carbon (SOC), as a proxy for carbon storage, in areas disturbed by invasive feral hogs Sus scrofa and in adjacent, undisturbed areas within 3 southeastern US salt marshes. Contrary to our hypothesis that hog overturning of soils would stimulate soil respiration, this metric was lower and both surface and subsurface litter decomposition rates were similar in disturbed relative to undisturbed areas across all sites. SOC was lower in disturbed versus undisturbed areas at 2 sites as hypothesized, but higher at 1 site. Surveys and analyses reveal that lower and less variable infauna, plant, and benthic algae densities likely suppressed soil respiration in hog-disturbed versus undisturbed areas, while the offsetting effects of lower invertebrate densities and higher soil temperature likely caused decomposition to be consistent within and outside of disturbed areas. . These findings suggest that hog removal of plants and disruption of soils can cause tracts of marsh to transition from carbon sinks to sources where these disturbances are intense enough to prohibit rapid plant recovery and promote the gradual respiration of carbon stocks from denuded soils.