Skip to main content

Search the SPREP Catalogue

Refine Search Results

Related Countries

Tags / Keywords

Language

Available Online

Related Countries

Tags / Keywords

Available Online

21 result(s) found.

Sort by

You searched for

  • Tags / Keywords hawaii
    X
  • Tags / Keywords bryozoa
    X
First report of marine alien species in mainland Ecuador: threats of invasion in rocky shores
Island and Ocean Ecosystems, BRB
Available Online

Bigatti, G.

,

Cornejo, M.

,

Coronel, J.

,

Cárdenas, A.

,

Cárdenas-Calle, M.

,

Keith, I.

,

Martinez, P.

,

Mora, E.

,

Pérez-Correa, J.

,

Rivera, F.

,

Torres, G.

,

Triviño, M.

,

Troccoli, L.

,

Villamar, F.

,

Zambrano, R.

2019
Invasive species are of signi?cant concern, especially in mega-diverse countries, because they cause negative e?ects such as loss of native biodiversity, ecological alterations, disease spread, and impacts on economic development and human health. In mainland Ecuador, information on invasive invertebrates in marine ecosystems is scarce. The objective of this study was to describe and locate the invasive species present in the rocky shores of the intertidal and subtidal zones along 10 areas (83 sites) covering most of the Ecuadorian coast during 2015–2016. Benthic macroinvertebrates communities were measured over quadrats located randomly on a 50 m transect positioned parallel to the coast in the intertidal and subtidal zone, covering an area of 1,860 km2. Six invasive species were recorded: Arthropoda (Amphibalanus amphitrite), Cnidaria (Pennaria disticha, Carijoa riisei), Bryozoa (Bugula neritina), Rhodophyta (Asparagopsis taxiformis) and Chlorophyta (Caulerpa racemosa). The areas with highest abundance of invasive species were in Jama (not a protected area), Marine and Costal Wildlife Reserve Puntilla of Santa Elena and Santa Clara Island Wildlife Refuge (protected areas). The most abundant species was Carijoa riisei with a relative abundance of up to 80%. It was the most aggressive of the invasive species registered in the subtidal zone, mainly in northern centre of the Ecuadorian coast. C. riisei is growing on native coral (Pocillopora spp.) and on sessile macroinvertebrate communities (Pinctada mazatlanica, Muricea appresa and Aplysina sp.) that are being a?ected by its invasion. This study must be taken into account by local and regional government authorities to create public policy programmes of monitoring for surveillance and control of invasive species. These programmes should focus on integration of socio-economic and ecological e?ects. They should be complemented by experimental design and analysis of environmental variables to provide technical information for a baseline of bio-invasion analysis along the Ecuadorian coast and Galápagos, to avoid the expansion of invasive species negatively a?ecting the marine biodiversity of mega-diverse countries such as Ecuador and other countries of South America.
Eradication programmes complicated by long-lived seed banks: lessons learnt from 15 years of miconia control on O'ahu Island, Hawai'i
Island and Ocean Ecosystems, BRB
Available Online
2019
The invasive tree Miconia calvescens (Melastomataceae) is a priority for control on the Hawaiian Island of O?ahu due to its potential to replace native ??hi?a (Metrosideros polymorpha, Myrtaceae) forests and degrade watershed function if allowed to establish. The O?ahu Invasive Species Committee (OISC) is attempting to eradicate this species from the island of O?ahu. OISC uses a bu?er strategy based on estimated seed dispersal distance to determine the area under surveillance. This strategy has worked well enough to suppress the number of trees reaching reproductive age. The number of mature trees removed annually is now less than the number initially removed when the programme started in 2001. In 2016, just 12 mature trees were removed from 54.71 km2 surveyed compared to 2002, when 40 mature trees were removed from 8.26 km2 surveyed, a 96% drop in mature trees per square kilometre surveyed. However, miconia has a long-lived seed bank and can germinate after 20 years of dormancy in the soil. Funding shortages and gaps in surveys due to refusal of private property owners to allow access have resulted in some long-range extensions. OISC’s results suggest that seed bank longevity is an important factor when prioritising invasive species risk and that allocating more resources at the beginning of a programme to eradicate a species with long-lived seed banks may be a better strategy than starting small and expanding.
Potential economic damage from introduction of Brown Tree Snakes, Boiga Irregularis (Reptilia: Colubridae), to the Islands of Hawaii
BRB

Gebhardt, Karen

,

Kirkpatrick, Katy N.

,

Shwiff, Stephanie A.

,

Shwiff, Steven S.

2010
The Brown Tree Snake (Boiga irregularis) has caused ecological and economic damage to Guam, and the snake has the potential to colonize other islands in the Paci c Ocean. This study quanti es the potential economic damage if the snake were translocated, established in the state of Hawai‘i, and causing damage at levels similar to those on Guam. Damages modeled included costs of medical treatments due to snakebites, snake-caused power outages, and decreased tourism resulting from effects of the snake. Damage caused by presence of the Brown Tree Snake on Guam was used as a guide to estimate potential economic damage to Hawai‘i from both medical- and power outage–related damage. To predict tourism impact, a survey was administered to Hawaiian tourists that identi ed tourist responses to potential effects of the Brown Tree Snake. These results were then used in an input-output model to predict damage to the state economy. Summing these damages resulted in an estimated total potential annual damage to Hawai‘i of between $593 million and $2.14 billion. This economic analysis provides a range of potential damages that policy makers can use in evaluation of future prevention and control programs.
Taking the sting out of the Little Fire Ant in Hawaii
BRB

Lee, Donna J.

,

Leung, PingSun

,

Motoki, Michael

,

Nakamoto, Stuart T.

,

Vanderwoude, Casper

2015
Inthe1990's,LittleFireAnts(LFAs)founditswaytotheislandofHawaii,mostlikelytravelingwithashipmentof potted plantsfrom Florida.These plants weresubsequentlysold toconsumers along theeastcoast of theIsland, alongwithLittleFireAntcolonieslivinginthepottingmedium.LFAisnowthrivingandcontinuestospread.Fifteenyearsaftertheinitialdetectionin1999,LFAhasspreadtoover4000locationsontheislandofHawaiiandhas beenfoundinisolatedlocationsonKauai,Maui,andOahuIslands.Currenteffortsareexpectedtocontaintheinfestations on the otherislands but signi cant additional investment isneeded tohalt therapid spread of LFA on the island of Hawaii. Increased management expenditures can suppress infestations; reduce spread between sectors; and decrease long-term management costs, damages, and stings.| Animmediateexpenditureof$8millioninthenext2–3yearsplusfollow-upprevention,monitoring,andmitigation treatments will yield $1.210 billion in reduced control costs, $129 million in lowered economic damages, 315 million fewer human sting incidents, and 102 million less pet sting incidents over 10 years.| Over35years,thebene tsinclude$5.496billioninreducedcontrolcosts,$538millionlesseconomicdamages, 2.161 billion fewer human sting incidents, and 762 million fewer pet sting incidents.