Skip to main content

Search the SPREP Catalogue

Refine Search Results

Tags / Keywords

Language

Available Online

Tags / Keywords

Available Online

78 result(s) found.

Sort by

You searched for

  • Tags / Keywords rodents
    X
  • Tags / Keywords mapping
    X
The impacts of introduced house mice on the breeding success of nesting seabirds on Gough Island
BRB
Available Online

Bond, Alexander L.

,

Caravaggi, Anthony

,

Cooper, John

,

Cuthber, Richard J.

,

Ryan, Peter G.

2018
Invasive species are the main threat to island biodiversity; seabirds are particularly vulnerable and are one of the most threatened groups of birds. Gough Island, a UNESCO World Heritage Site in the South Atlantic Ocean, is an Important Bird and Biodiversity Area, and one of the most important seabird colonies globally. Invasive House Mice Mus musculus depredate eggs and chicks of most seabird species on the island, but the extent of their impact has not been quantified. We used field data and bootstrapped normal distributions to estimate breeding success and the number of surviving chicks for 10 seabird species on Gough Island, and compared estimates with those of analogous species from predator-free islands. We examined the effects of season and nest-site location on the breeding success of populations on Gough Island, predicting that the breeding success of Gough birds would be lower than that of analogues, particularly among small burrownesting species. We also predicted that winter-breeding species would exhibit lower breeding success than summer-breeding species, because mice have fewer alternative food sources in winter; and below-ground nesters would have lower breeding success than surface nesters, as below-ground species are smaller so their chicks are easier prey for mice. We did indeed find that seabirds on Gough Island had low breeding success compared with analogues, losing an estimated 1 739 000 (1 467 000–2 116 000) eggs/ chicks annually. Seven of the 10 focal species on Gough Island had particularly high chick mortality and may have been subject to intense mouse predation. Below-ground and winter breeders had lower breeding success than surface- and summer-breeders. MacGillivray’s Prion Pachyptila macgillivrayi, Atlantic Petrel Pterodroma incerta and Tristan Albatross Diomedea dabbenena are endemic or near-endemic to Gough Island and are likely to be driven to extinction if invasive mice are not removed.
The Ecology of Rodents in the Tonga Islands
BRB
Available Online

Twibell, John

The influence on crop damage of Rattus norvegicus, Rattus rattus, and the native Polynesian rat, Rattus exulans, was studied during the establishment of a rat control program for the Tongan Department of Agriculture in 1969. This was the first long-term study of Tongan rodents. Previous scientific literature on Tongan mammals is very sparse. The Kingdom of Tonga, or Friendly Islands, consists of approximately 150 small islands with a combined area of about 256 square miles at lat 21 0 S. The majority of these islands are composed of raised coral limestone ; however, there is a row of six volcanic islands on Tonga's western border. Tongatapu, the location of the government center, is the largest and most important island. The Ha'apai island group lies 80 miles north of Tongatapu, and 150 miles north is the Vava'u group. Fiji is 420 nautical miles east and Samoa is 480 miles north. The climate is tropical and is influenced seasonally by trade winds. Since Captain Cook's first visit in 1773, Western civilization has brought trade, missionaries, and perhaps rats to Tonga. With this shipping came numerous introduced plants and animals. The arrival dates for the common rat, Rattus norvegicus, and the "European" roof rat, Rattus rattus, are not known, but are believed to be more recent, probably since the increase of regular shipping trade and the construction of wharves. Presently rodents account for approximately 20 percent of the agricultural losses and $50,000 worth of economic loss each year (Twibell, unpublished). This is a conservative estimate based on damage counts and observation. In some areas rats destroy or damage up to 50 percent of the coconuts, which represent the main economic crop in Tonga. THE INFLUENCE on crop damage of Rattus norvegicus, Rattus rattus, and the native Polynesian rat, Rattus exulans, was studied during the establishment of a rat control program for the Tongan Department of Agriculture in 1969. This was the first long-term study of Tongan rodents. Previous scientific literature on Tongan mammals is very sparse. The Kingdom of Tonga, or Friendly Islands, consists of approximately 150 small islands with a combined area of about 256 square miles at lat 21 0 S. The majority of these islands are composed of raised coral limestone ; however, there is a row of six volcanic islands on Tonga's western border. Tongatapu, the location of the government center, is the largest and most important island. The Ha'apai island group lies 80 miles north of Tongatapu, and 150 miles north is the Vava'u group. Fiji is 420 nautical miles east and Samoa is 480 miles north. The climate is tropical and is influenced seasonally by trade winds. Since Captain Cook's first visit in 1773, Western civilization has brought trade, missionaries, and perhaps rats to Tonga. With this shipping came numerous introduced plants and animals. The arrival dates for the common rat, Rattus norvegicus, and the "European" roof rat, Rattus rattus, are not known, but are believed to be more recent, probably since the increase of regular shipping trade and the construction of wharves. Presently rodents account for approximately 20 percent of the agricultural losses and $50,000 worth of economic loss each year (Twibell, unpublished). This is a conservative estimate based on damage counts and observation. In some areas rats destroy or damage up to 50 percent of the coconuts, which represent the main economic crop in Tonga.
The history of the aerial application of rodenticide in New Zealand
Island and Ocean Ecosystems, BRB
Available Online

Broome, K.

,

Garden, P.

,

McClelland, P.

2019
Following the incursion of rats (Rattus rattus) on Taukihepa (Big South Cape Island; 93.9 km²) off southern New Zealand in 1963, and the subsequent extirpation of several endemic species, the New Zealand Wildlife Service realised that, contrary to general belief at the time, introduced predators do not reach a natural balance with native species and that a safe breeding habitat for an increasing number of ‘at risk’ species was urgently needed. Off shore islands offered the best option for providing predator free habitat but there was a limited number of predator-free islands available and most were very small. Eradicating rodents on larger islands to provide a wider range and greater area of habitats was required and hand treating these larger areas using trapping and hand application of toxicants, the only methods available at the time, proved problematic and often impossible. Helicopters had been used to distribute bait for the control of rabbits and brushtail possums in the past but eradication of any particular predator species was considered ‘not feasible’. The development of a GPS-based aircraft guidance system, a suitable bait product, specialised bait delivery systems and second-generation anti-coagulant toxicants changed that. Now islands as large as South Georgia (3,900 km²) have been treated using this method
Successes and failures of rat eradications on tropical islands: a comparative review of eight recent projects
Island and Ocean Ecosystems, BRB
Available Online

Brown, D.

,

Cranwell, S.

,

Cuthbert, R.J.

,

Griffiths, R.

,

Howald, G.

,

Keitt, B.

,

Pitt, W.C.

,

Tershy, B.

,

Wegmann, A.

2019
Rat eradication is a highly effective tool for conserving biodiversity, but one that requires considerable planning eff ort, a high level of precision during implementation and carries no guarantee of success. Overall, rates of success are generally high but lower for tropical islands where most biodiversity is at risk. We completed a qualitative comparative review on four successful and four unsuccessful tropical rat eradication projects to better understand the factors influencing the success of tropical rat eradications and shed light on how the risk of future failures can be minimised. Observations of juvenile rats surviving more than four weeks after bait application on two islands validate the previously considered theoretical risk that unweaned rats can remain isolated from exposure to rodent bait for a period. Juvenile rats emerging after bait was no longer readily available may have been the cause of some or all the project failures. The elevated availability of natural resources (primarily fruiting or seeding plants) generated by rainfall prior to project implementation(documented for three of the unsuccessful projects) may also have contributed to project failure by reducing the likelihood that all rats would consume sufficient rodent bait or compounding other factors such as rodent breeding. Our analysis highlights that rat eradication can be achieved on tropical islands but suggests that events that cannot be predicted with certainty in some tropical regions can act individually or in concert to reduce the likelihood of project success. We recommend research to determine the relative importance of these factors in the fate of future tropical projects and suggest that existing practices be re-evaluated for tropical island rodent eradications.